|
|
|
|
|
|
|
import datetime |
|
from rknn.api import RKNN |
|
from sys import exit |
|
|
|
|
|
ONNX_MODEL="decoder.onnx" |
|
RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn") |
|
DATASET="" |
|
QUANTIZE=False |
|
detailed_performance_log = True |
|
|
|
timedate_iso = datetime.datetime.now().isoformat() |
|
|
|
rknn = RKNN(verbose=True) |
|
rknn.config( |
|
|
|
|
|
quantized_dtype='w8a8', |
|
quantized_algorithm='normal', |
|
quantized_method='channel', |
|
quantized_hybrid_level=0, |
|
target_platform='rk3588', |
|
quant_img_RGB2BGR = False, |
|
float_dtype='float16', |
|
optimization_level=3, |
|
custom_string=f"converted at {timedate_iso}", |
|
remove_weight=False, |
|
compress_weight=False, |
|
inputs_yuv_fmt=None, |
|
single_core_mode=False, |
|
dynamic_input=None, |
|
model_pruning=False, |
|
op_target=None, |
|
quantize_weight=False, |
|
remove_reshape=False, |
|
sparse_infer=False, |
|
enable_flash_attention=False, |
|
) |
|
|
|
ret = rknn.load_onnx(model=ONNX_MODEL) |
|
ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None) |
|
ret = rknn.export_rknn(RKNN_MODEL) |
|
|
|
|
|
|
|
|
|
|