Update README.md
Browse files
README.md
CHANGED
@@ -15,3 +15,56 @@ tags:
|
|
15 |
- Original model: [ibm-granite/granite-vision-3.1-2b-preview](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview)
|
16 |
- precision: 4-bit
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
- Original model: [ibm-granite/granite-vision-3.1-2b-preview](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview)
|
16 |
- precision: 4-bit
|
17 |
|
18 |
+
## Setup
|
19 |
+
- You can run the quantized model with these steps:
|
20 |
+
|
21 |
+
- Check requirements from the original. In particular, check python, cuda, and transformers versions.
|
22 |
+
|
23 |
+
- Make sure that you have installed quantization related packages.
|
24 |
+
```bash
|
25 |
+
pip install bitsandbytes>=0.39.0
|
26 |
+
pip install --upgrade accelerate transformers
|
27 |
+
```
|
28 |
+
|
29 |
+
- Load & run the model.
|
30 |
+
```python
|
31 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
32 |
+
from huggingface_hub import hf_hub_download
|
33 |
+
import torch
|
34 |
+
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
|
37 |
+
|
38 |
+
model = AutoModelForVision2Seq.from_pretrained('hassenhamdi/granite-vision-3.1-2b-preview-4bit', trust_remote_code=True).to(device)
|
39 |
+
tokenizer = AutoProcessor.from_pretrained('ibm-granite/granite-vision-3.1-2b-preview')
|
40 |
+
|
41 |
+
|
42 |
+
# prepare image and text prompt, using the appropriate prompt template
|
43 |
+
|
44 |
+
img_path = hf_hub_download(repo_id=model_path, filename='example.png')
|
45 |
+
|
46 |
+
conversation = [
|
47 |
+
{
|
48 |
+
"role": "user",
|
49 |
+
"content": [
|
50 |
+
{"type": "image", "url": img_path},
|
51 |
+
{"type": "text", "text": "What is the highest scoring model on ChartQA and what is its score?"},
|
52 |
+
],
|
53 |
+
},
|
54 |
+
]
|
55 |
+
inputs = processor.apply_chat_template(
|
56 |
+
conversation,
|
57 |
+
add_generation_prompt=True,
|
58 |
+
tokenize=True,
|
59 |
+
return_dict=True,
|
60 |
+
return_tensors="pt"
|
61 |
+
).to(device)
|
62 |
+
|
63 |
+
|
64 |
+
# autoregressively complete prompt
|
65 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
66 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
67 |
+
```
|
68 |
+
|
69 |
+
## Configurations
|
70 |
+
- The configuration info are in config.json.
|