Add files using upload-large-folder tool
Browse files- config.json +77 -0
- configuration_llada.py +463 -0
- mm_projector.bin +3 -0
- trainer_state.json +0 -0
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"activation_type": "silu",
|
4 |
+
"add_faster_video": false,
|
5 |
+
"add_time_instruction": false,
|
6 |
+
"alibi": false,
|
7 |
+
"alibi_bias_max": 8.0,
|
8 |
+
"architectures": [
|
9 |
+
"LLaDAModelLM"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"attention_layer_norm": false,
|
13 |
+
"attention_layer_norm_with_affine": true,
|
14 |
+
"auto_map": {
|
15 |
+
"AutoConfig": "configuration_llada.LLaDAConfig",
|
16 |
+
"AutoModel": "modeling_llada.LLaDAModelLM",
|
17 |
+
"AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
|
18 |
+
},
|
19 |
+
"bias_for_layer_norm": false,
|
20 |
+
"block_group_size": 1,
|
21 |
+
"block_type": "llama",
|
22 |
+
"d_model": 4096,
|
23 |
+
"embedding_dropout": 0.0,
|
24 |
+
"embedding_size": 126464,
|
25 |
+
"eos_token_id": 126081,
|
26 |
+
"faster_token_stride": 10,
|
27 |
+
"flash_attention": false,
|
28 |
+
"force_sample": false,
|
29 |
+
"image_aspect_ratio": "square",
|
30 |
+
"image_crop_resolution": null,
|
31 |
+
"image_grid_pinpoints": null,
|
32 |
+
"image_split_resolution": null,
|
33 |
+
"include_bias": false,
|
34 |
+
"include_qkv_bias": false,
|
35 |
+
"init_cutoff_factor": null,
|
36 |
+
"init_device": "meta",
|
37 |
+
"init_fn": "mitchell",
|
38 |
+
"init_std": 0.02,
|
39 |
+
"input_emb_norm": false,
|
40 |
+
"layer_norm_type": "rms",
|
41 |
+
"layer_norm_with_affine": true,
|
42 |
+
"mask_token_id": 126336,
|
43 |
+
"max_sequence_length": 4096,
|
44 |
+
"mlp_hidden_size": 12288,
|
45 |
+
"mlp_ratio": 4,
|
46 |
+
"mm_newline_position": "grid",
|
47 |
+
"mm_patch_merge_type": "flat",
|
48 |
+
"mm_projector_lr": null,
|
49 |
+
"mm_spatial_pool_mode": "bilinear",
|
50 |
+
"mm_spatial_pool_stride": null,
|
51 |
+
"mm_tunable_parts": "mm_mlp_adapter",
|
52 |
+
"mm_use_im_patch_token": false,
|
53 |
+
"mm_use_im_start_end": false,
|
54 |
+
"mm_vision_tower_lr": null,
|
55 |
+
"model_type": "llada",
|
56 |
+
"multi_query_attention": null,
|
57 |
+
"n_heads": 32,
|
58 |
+
"n_kv_heads": 32,
|
59 |
+
"n_layers": 32,
|
60 |
+
"pad_token_id": 126081,
|
61 |
+
"pos_skipping_range": 4096,
|
62 |
+
"precision": "amp_bf16",
|
63 |
+
"residual_dropout": 0.0,
|
64 |
+
"rms_norm_eps": 1e-05,
|
65 |
+
"rope": true,
|
66 |
+
"rope_full_precision": true,
|
67 |
+
"rope_theta": 500000.0,
|
68 |
+
"scale_logits": false,
|
69 |
+
"tokenizer_model_max_length": 8192,
|
70 |
+
"tokenizer_padding_side": "right",
|
71 |
+
"torch_dtype": "bfloat16",
|
72 |
+
"transformers_version": "4.50.3",
|
73 |
+
"use_cache": true,
|
74 |
+
"use_pos_skipping": false,
|
75 |
+
"vocab_size": 126464,
|
76 |
+
"weight_tying": false
|
77 |
+
}
|
configuration_llada.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLaDA configuration
|
3 |
+
"""
|
4 |
+
from transformers import AutoConfig, PretrainedConfig
|
5 |
+
|
6 |
+
from enum import Enum
|
7 |
+
from os import PathLike
|
8 |
+
from typing import Union
|
9 |
+
from dataclasses import asdict, dataclass, field
|
10 |
+
from glob import glob
|
11 |
+
from pathlib import Path
|
12 |
+
from typing import (
|
13 |
+
Any,
|
14 |
+
Dict,
|
15 |
+
Iterable,
|
16 |
+
List,
|
17 |
+
Optional,
|
18 |
+
Tuple,
|
19 |
+
Type,
|
20 |
+
TypeVar,
|
21 |
+
Union,
|
22 |
+
cast,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"ActivationType",
|
28 |
+
"ActivationCheckpointingStrategy",
|
29 |
+
"BlockType",
|
30 |
+
"LayerNormType",
|
31 |
+
"InitFnType",
|
32 |
+
"ModelConfig",
|
33 |
+
]
|
34 |
+
|
35 |
+
PathOrStr = Union[str, PathLike]
|
36 |
+
|
37 |
+
|
38 |
+
class StrEnum(str, Enum):
|
39 |
+
"""
|
40 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
41 |
+
We include this here for compatibility with older version of Python.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __str__(self) -> str:
|
45 |
+
return self.value
|
46 |
+
|
47 |
+
def __repr__(self) -> str:
|
48 |
+
return f"'{str(self)}'"
|
49 |
+
|
50 |
+
|
51 |
+
class LayerNormType(StrEnum):
|
52 |
+
default = "default"
|
53 |
+
"""
|
54 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
55 |
+
"""
|
56 |
+
|
57 |
+
low_precision = "low_precision"
|
58 |
+
"""
|
59 |
+
A low-precision version of the default LayerNorm.
|
60 |
+
"""
|
61 |
+
|
62 |
+
rms = "rms"
|
63 |
+
"""
|
64 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
65 |
+
probably the fastest implementation.
|
66 |
+
"""
|
67 |
+
|
68 |
+
gemma_rms = "gemma_rms"
|
69 |
+
"""
|
70 |
+
An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
|
71 |
+
probably the fastest implementation.
|
72 |
+
"""
|
73 |
+
|
74 |
+
amd_compatible = "amd_compatible"
|
75 |
+
"""
|
76 |
+
LayerNorm implemented manually to work around an issue with ROCm.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
class ActivationType(StrEnum):
|
81 |
+
gelu = "gelu"
|
82 |
+
relu = "relu"
|
83 |
+
silu = "silu"
|
84 |
+
swiglu = "swiglu"
|
85 |
+
|
86 |
+
|
87 |
+
class BlockType(StrEnum):
|
88 |
+
sequential = "sequential"
|
89 |
+
parallel = "parallel"
|
90 |
+
|
91 |
+
llama = "llama"
|
92 |
+
"""
|
93 |
+
A block similar to the sequential block with slightly different
|
94 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
95 |
+
"""
|
96 |
+
|
97 |
+
|
98 |
+
class InitFnType(StrEnum):
|
99 |
+
mitchell = "mitchell"
|
100 |
+
"""
|
101 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
102 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
103 |
+
on the size of the weights as well as the depth of the layer.
|
104 |
+
"""
|
105 |
+
|
106 |
+
normal = "normal"
|
107 |
+
"""
|
108 |
+
All weights are initialized from the same normal distribution.
|
109 |
+
"""
|
110 |
+
|
111 |
+
kaiming_normal = "kaiming_normal"
|
112 |
+
"""
|
113 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
114 |
+
Note this currently won't work with FSDP.
|
115 |
+
"""
|
116 |
+
|
117 |
+
fan_in = "fan_in"
|
118 |
+
"""
|
119 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
120 |
+
is the input dimensionality of the kernel.
|
121 |
+
"""
|
122 |
+
|
123 |
+
full_megatron = "full_megatron"
|
124 |
+
"""
|
125 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
126 |
+
"""
|
127 |
+
|
128 |
+
|
129 |
+
@dataclass
|
130 |
+
class ModelConfig():
|
131 |
+
"""
|
132 |
+
LLaDA (model) configuration.
|
133 |
+
"""
|
134 |
+
|
135 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
136 |
+
|
137 |
+
d_model: int = 768
|
138 |
+
"""
|
139 |
+
The hidden size of the model.
|
140 |
+
"""
|
141 |
+
|
142 |
+
n_heads: int = 12
|
143 |
+
"""
|
144 |
+
The number of self-attention heads.
|
145 |
+
"""
|
146 |
+
|
147 |
+
n_kv_heads: Optional[int] = None
|
148 |
+
"""
|
149 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
150 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
151 |
+
Set this to 1 for multi-query attention.
|
152 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
153 |
+
"""
|
154 |
+
|
155 |
+
n_layers: int = 12
|
156 |
+
"""
|
157 |
+
The number of layers/blocks.
|
158 |
+
"""
|
159 |
+
|
160 |
+
mlp_ratio: int = 4
|
161 |
+
"""
|
162 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
163 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
164 |
+
"""
|
165 |
+
|
166 |
+
mlp_hidden_size: Optional[int] = None
|
167 |
+
"""
|
168 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
169 |
+
"""
|
170 |
+
|
171 |
+
activation_type: ActivationType = ActivationType.swiglu
|
172 |
+
"""
|
173 |
+
The activation function to use within the MLP layers.
|
174 |
+
"""
|
175 |
+
|
176 |
+
block_type: BlockType = BlockType.sequential
|
177 |
+
"""
|
178 |
+
The transformer block implementation.
|
179 |
+
"""
|
180 |
+
|
181 |
+
block_group_size: int = 1
|
182 |
+
"""
|
183 |
+
The number of blocks to group together into a single parent block.
|
184 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
185 |
+
of blocks together with a single FSDP wrapper during training.
|
186 |
+
"""
|
187 |
+
|
188 |
+
alibi: bool = False
|
189 |
+
"""
|
190 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
191 |
+
"""
|
192 |
+
|
193 |
+
alibi_bias_max: float = 8.0
|
194 |
+
"""
|
195 |
+
Maximum absolute value of ALiBi bias.
|
196 |
+
"""
|
197 |
+
|
198 |
+
rope: bool = False
|
199 |
+
"""
|
200 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
201 |
+
"""
|
202 |
+
|
203 |
+
rope_full_precision: bool = True
|
204 |
+
"""
|
205 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
206 |
+
apply RoPE at the precision of the input.
|
207 |
+
"""
|
208 |
+
|
209 |
+
flash_attention: bool = False
|
210 |
+
"""
|
211 |
+
If ``True``, use ``FlashAttention``.
|
212 |
+
"""
|
213 |
+
|
214 |
+
attention_dropout: float = 0.1
|
215 |
+
"""
|
216 |
+
The dropout probability within the attention modules.
|
217 |
+
"""
|
218 |
+
|
219 |
+
multi_query_attention: Optional[bool] = None
|
220 |
+
"""
|
221 |
+
Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
|
222 |
+
and is more efficient during inference.
|
223 |
+
"""
|
224 |
+
|
225 |
+
attention_layer_norm: bool = False
|
226 |
+
"""
|
227 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
228 |
+
This can help stabilize training.
|
229 |
+
"""
|
230 |
+
|
231 |
+
residual_dropout: float = 0.1
|
232 |
+
"""
|
233 |
+
The dropout probability for the MLP and attention output within each block.
|
234 |
+
"""
|
235 |
+
|
236 |
+
embedding_dropout: float = 0.1
|
237 |
+
"""
|
238 |
+
The dropout probability for embeddings.
|
239 |
+
"""
|
240 |
+
|
241 |
+
input_emb_norm: bool = False
|
242 |
+
"""
|
243 |
+
An input hidden_states norm implementation by gemmma.
|
244 |
+
"""
|
245 |
+
|
246 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
247 |
+
"""
|
248 |
+
The layernorm implementation to use.
|
249 |
+
"""
|
250 |
+
|
251 |
+
layer_norm_with_affine: bool = True
|
252 |
+
"""
|
253 |
+
Whether to include bias and weight parameters for the layer norms.
|
254 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
255 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
256 |
+
to ``False``.
|
257 |
+
"""
|
258 |
+
|
259 |
+
rms_norm_eps: float = 1e-05
|
260 |
+
"""
|
261 |
+
The rms layernorm eps param.
|
262 |
+
"""
|
263 |
+
|
264 |
+
attention_layer_norm_with_affine: bool = True
|
265 |
+
"""
|
266 |
+
Toggle affine transform for the QK norms.
|
267 |
+
"""
|
268 |
+
|
269 |
+
max_sequence_length: int = 1024
|
270 |
+
"""
|
271 |
+
The maximum input sequence length supported by the model.
|
272 |
+
"""
|
273 |
+
|
274 |
+
rope_theta: float = 10000.0
|
275 |
+
"""
|
276 |
+
The rope base param.
|
277 |
+
"""
|
278 |
+
|
279 |
+
include_qkv_bias: Optional[bool] = False
|
280 |
+
"""
|
281 |
+
Whether or not to include bias parameters in qkv linear layers.
|
282 |
+
"""
|
283 |
+
|
284 |
+
include_bias: bool = False
|
285 |
+
"""
|
286 |
+
Whether or not to include bias parameters in linear layers.
|
287 |
+
In PaLM, they got rid of all bias terms because they found that large
|
288 |
+
models tend to have near 0 bias terms anyway.
|
289 |
+
"""
|
290 |
+
|
291 |
+
bias_for_layer_norm: Optional[bool] = None
|
292 |
+
"""
|
293 |
+
Whether or not to include bias parameters in layer norm.
|
294 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
295 |
+
layer norm.
|
296 |
+
When this is None (the default), it inherits the setting from include_bias.
|
297 |
+
"""
|
298 |
+
|
299 |
+
scale_logits: bool = False
|
300 |
+
"""
|
301 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
302 |
+
"""
|
303 |
+
|
304 |
+
vocab_size: int = 50257
|
305 |
+
"""
|
306 |
+
Vocabulary size of the model.
|
307 |
+
"""
|
308 |
+
|
309 |
+
embedding_size: Optional[int] = 50304
|
310 |
+
"""
|
311 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
312 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
313 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
314 |
+
substantially.
|
315 |
+
"""
|
316 |
+
|
317 |
+
weight_tying: bool = True
|
318 |
+
"""
|
319 |
+
Whether to tie output linear weights to the input embedding.
|
320 |
+
"""
|
321 |
+
|
322 |
+
eos_token_id: int = 50256
|
323 |
+
"""
|
324 |
+
The ID of the end-of-sentence special token.
|
325 |
+
"""
|
326 |
+
|
327 |
+
pad_token_id: int = 50256
|
328 |
+
"""
|
329 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
330 |
+
"""
|
331 |
+
|
332 |
+
mask_token_id: Optional[int] = 50256
|
333 |
+
"""
|
334 |
+
The ID of the token to use for mask token. Defaults to the ID of the EOS token.
|
335 |
+
"""
|
336 |
+
|
337 |
+
init_device: Optional[str] = None
|
338 |
+
"""
|
339 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
340 |
+
"""
|
341 |
+
|
342 |
+
init_fn: InitFnType = InitFnType.normal
|
343 |
+
"""
|
344 |
+
The weight initialization strategy.
|
345 |
+
"""
|
346 |
+
|
347 |
+
init_std: float = 0.02
|
348 |
+
"""
|
349 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
350 |
+
as "normal".
|
351 |
+
"""
|
352 |
+
|
353 |
+
init_cutoff_factor: Optional[float] = None
|
354 |
+
"""
|
355 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
356 |
+
as "normal". Setting this to None means values are not cutoff.
|
357 |
+
"""
|
358 |
+
|
359 |
+
precision: Optional[str] = None
|
360 |
+
"""
|
361 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
362 |
+
See :data:`TrainConfig.precision` instead.
|
363 |
+
"""
|
364 |
+
|
365 |
+
@property
|
366 |
+
def effective_n_kv_heads(self) -> int:
|
367 |
+
if self.n_kv_heads is None:
|
368 |
+
if self.multi_query_attention is True:
|
369 |
+
return 1
|
370 |
+
else:
|
371 |
+
return self.n_heads
|
372 |
+
else:
|
373 |
+
if self.multi_query_attention is None:
|
374 |
+
return self.n_kv_heads
|
375 |
+
if self.multi_query_attention:
|
376 |
+
n_kv_heads_should_be = 1
|
377 |
+
else:
|
378 |
+
n_kv_heads_should_be = self.n_heads
|
379 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
380 |
+
return n_kv_heads_should_be
|
381 |
+
else:
|
382 |
+
raise Exception(
|
383 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
384 |
+
)
|
385 |
+
|
386 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
387 |
+
whole_layer = "whole_layer"
|
388 |
+
"""
|
389 |
+
Checkpoint every transformer layer.
|
390 |
+
"""
|
391 |
+
|
392 |
+
one_in_two = "one_in_two"
|
393 |
+
"""
|
394 |
+
Checkpoint one in two transformer layers.
|
395 |
+
"""
|
396 |
+
|
397 |
+
one_in_three = "one_in_three"
|
398 |
+
"""
|
399 |
+
Checkpoint one in three transformer layers.
|
400 |
+
"""
|
401 |
+
|
402 |
+
one_in_four = "one_in_four"
|
403 |
+
"""
|
404 |
+
Checkpoint one in four transformer layers.
|
405 |
+
"""
|
406 |
+
|
407 |
+
two_in_three = "two_in_three"
|
408 |
+
"""
|
409 |
+
Checkpoint two out of every three transformer layers.
|
410 |
+
"""
|
411 |
+
|
412 |
+
three_in_four = "three_in_four"
|
413 |
+
"""
|
414 |
+
Checkpoint three out of four of every transformer layers.
|
415 |
+
"""
|
416 |
+
|
417 |
+
four_in_five = "four_in_five"
|
418 |
+
"""
|
419 |
+
Checkpoint four out of five of every transformer layers.
|
420 |
+
"""
|
421 |
+
|
422 |
+
nine_in_ten = "nine_in_ten"
|
423 |
+
"""
|
424 |
+
Checkpoint nine out of ten of every transformer layers.
|
425 |
+
"""
|
426 |
+
|
427 |
+
fine_grained = "fine_grained"
|
428 |
+
"""
|
429 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
430 |
+
"""
|
431 |
+
|
432 |
+
|
433 |
+
class LLaDAConfig(PretrainedConfig):
|
434 |
+
model_type = "llada"
|
435 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
436 |
+
|
437 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
438 |
+
model_config = ModelConfig()
|
439 |
+
all_kwargs = model_config.__dict__
|
440 |
+
all_kwargs.update(kwargs)
|
441 |
+
all_kwargs.update({"use_cache": use_cache})
|
442 |
+
all_kwargs.update(
|
443 |
+
{
|
444 |
+
"architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
|
445 |
+
}
|
446 |
+
)
|
447 |
+
super().__init__(**all_kwargs)
|
448 |
+
|
449 |
+
@property
|
450 |
+
def num_attention_heads(self):
|
451 |
+
return self.n_heads
|
452 |
+
|
453 |
+
@property
|
454 |
+
def num_hidden_layers(self):
|
455 |
+
return self.n_layers
|
456 |
+
|
457 |
+
@property
|
458 |
+
def hidden_size(self):
|
459 |
+
return self.d_model
|
460 |
+
|
461 |
+
|
462 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
463 |
+
AutoConfig.register("llada", LLaDAConfig)
|
mm_projector.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04822e971e02395b94b00704303112503beeb5842a115fa837d3ee8d4eb7dd37
|
3 |
+
size 43010104
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|