<?xml version="1.0"?> <net name="Model3" version="11"> <layers> <layer id="0" name="hidden_states" type="Parameter" version="opset1"> <data shape="?,?" element_type="f32" /> <output> <port id="0" precision="FP32" names="hidden_states"> <dim>-1</dim> <dim>-1</dim> </port> </output> </layer> <layer id="1" name="Constant_71187" type="Const" version="opset1"> <data element_type="i64" shape="5" offset="0" size="40" /> <output> <port id="0" precision="I64" names="8"> <dim>5</dim> </port> </output> </layer> <layer id="2" name="aten::view/Reshape" type="Reshape" version="opset1"> <data special_zero="false" /> <input> <port id="0" precision="FP32"> <dim>-1</dim> <dim>-1</dim> </port> <port id="1" precision="I64"> <dim>5</dim> </port> </input> <output> <port id="2" precision="FP32" names="14,9,hidden_states"> <dim>-1</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </output> </layer> <layer id="3" name="self.proj.weight" type="Const" version="opset1"> <data element_type="i8" shape="1280, 3, 2, 14, 14" offset="40" size="1505280" /> <output> <port id="0" precision="I8"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </output> </layer> <layer id="4" name="Convert_290860" type="Convert" version="opset1"> <data destination_type="f16" /> <input> <port id="0" precision="I8"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </input> <output> <port id="1" precision="FP16"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </output> </layer> <layer id="5" name="self.proj.weight/scale" type="Const" version="opset1"> <data element_type="f16" shape="1280, 1, 1, 1, 1" offset="1505320" size="2560" /> <output> <port id="0" precision="FP16"> <dim>1280</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> </port> </output> </layer> <layer id="6" name="self.proj.weight/fq_weights_1" type="Multiply" version="opset1"> <data auto_broadcast="numpy" /> <input> <port id="0" precision="FP16"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> <port id="1" precision="FP16"> <dim>1280</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> </port> </input> <output> <port id="2" precision="FP16"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </output> </layer> <layer id="7" name="self.proj.weight/fq_weights_1/convert" type="Convert" version="opset1"> <data destination_type="f32" /> <input> <port id="0" precision="FP16"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </input> <output> <port id="1" precision="FP32"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </output> </layer> <layer id="8" name="__module.proj/aten::_convolution/Convolution" type="Convolution" version="opset1"> <data strides="2, 14, 14" dilations="1, 1, 1" pads_begin="0, 0, 0" pads_end="0, 0, 0" auto_pad="explicit" /> <input> <port id="0" precision="FP32"> <dim>-1</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> <port id="1" precision="FP32"> <dim>1280</dim> <dim>3</dim> <dim>2</dim> <dim>14</dim> <dim>14</dim> </port> </input> <output> <port id="2" precision="FP32" names="33"> <dim>-1</dim> <dim>1280</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> </port> </output> </layer> <layer id="9" name="Constant_71234" type="Const" version="opset1"> <data element_type="i64" shape="2" offset="1507880" size="16" /> <output> <port id="0" precision="I64" names="18"> <dim>2</dim> </port> </output> </layer> <layer id="10" name="aten::view/Reshape_1" type="Reshape" version="opset1"> <data special_zero="false" /> <input> <port id="0" precision="FP32"> <dim>-1</dim> <dim>1280</dim> <dim>1</dim> <dim>1</dim> <dim>1</dim> </port> <port id="1" precision="I64"> <dim>2</dim> </port> </input> <output> <port id="2" precision="FP32" names="last_hidden_state"> <dim>-1</dim> <dim>1280</dim> </port> </output> </layer> <layer id="11" name="Result_71264" type="Result" version="opset1"> <input> <port id="0" precision="FP32"> <dim>-1</dim> <dim>1280</dim> </port> </input> </layer> </layers> <edges> <edge from-layer="0" from-port="0" to-layer="2" to-port="0" /> <edge from-layer="1" from-port="0" to-layer="2" to-port="1" /> <edge from-layer="2" from-port="2" to-layer="8" to-port="0" /> <edge from-layer="3" from-port="0" to-layer="4" to-port="0" /> <edge from-layer="4" from-port="1" to-layer="6" to-port="0" /> <edge from-layer="5" from-port="0" to-layer="6" to-port="1" /> <edge from-layer="6" from-port="2" to-layer="7" to-port="0" /> <edge from-layer="7" from-port="1" to-layer="8" to-port="1" /> <edge from-layer="8" from-port="2" to-layer="10" to-port="0" /> <edge from-layer="9" from-port="0" to-layer="10" to-port="1" /> <edge from-layer="10" from-port="2" to-layer="11" to-port="0" /> </edges> <rt_info> <Runtime_version value="2025.1.0-17990-dc1d9675cbf" /> <conversion_parameters> <framework value="pytorch" /> <is_python_object value="True" /> </conversion_parameters> <nncf> <friendly_names_were_updated value="True" /> <weight_compression> <advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" /> <all_layers value="False" /> <awq value="False" /> <backup_mode value="int8_asym" /> <gptq value="False" /> <group_size value="-1" /> <ignored_scope value="[]" /> <lora_correction value="False" /> <mode value="int8_sym" /> <ratio value="1.0" /> <scale_estimation value="False" /> <sensitivity_metric value="weight_quantization_error" /> </weight_compression> </nncf> <optimum> <optimum_intel_version value="1.22.0.dev0+753f84d" /> <optimum_version value="1.24.0.dev0" /> <pytorch_version value="2.5.0+cpu" /> <transformers_version value="4.45.0" /> </optimum> </rt_info> </net>