hhim8826 commited on
Commit
835071f
·
verified ·
1 Parent(s): 38f19c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -162
README.md CHANGED
@@ -1,199 +1,119 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - hhim8826/japanese-anime-speech-v2-split
5
+ language:
6
+ - ja
7
+ base_model:
8
+ - openai/whisper-large-v3-turbo
9
+ pipeline_tag: automatic-speech-recognition
10
+ tags:
11
+ - audio
12
+ - automatic-speech-recognition
13
+ - asr
14
+ - whisper
15
+ - japanese
16
+ - anime
17
+ - finetuned
18
+ license: apache-2.0
19
  ---
20
 
21
+ # 以下文檔生成BY AI!!!
22
 
23
+ 内容由 AI 生成,请仔细甄别
24
 
25
+ # Whisper Large V3 Turbo - Japanese Anime Speech
26
 
27
+ 這個模型是基於 OpenAI 的 Whisper Large V3 Turbo,針對日本動漫語音進行微調的語音辨識模型。特別針對動漫中的日語對話和表達方式進行優化,提供更準確的日語動漫對話文字轉錄。
28
 
29
+ ## 模型詳情
30
 
31
+ ### 模型描述
32
 
33
+ 這個模型是從 `openai/whisper-large-v3-turbo` 微調而來,專門用於辨識日本動漫中的語音內容。它經過 `hhim8826/japanese-anime-speech-v2-split` 資料集訓練,能夠更好地處理動漫語音的特點,包括特殊的語調、語氣和常見的動漫用語。
34
 
35
+ - **開發者:** hhim8826
36
+ - **模型類型:** 自動語音辨識 (ASR)
37
+ - **語言:** 日語
38
+ - **授權:** Apache 2.0
39
+ - **微調自模型:** openai/whisper-large-v3-turbo
40
 
41
+ ## 使用方法
 
 
 
 
 
 
42
 
43
+ ### 直接使用
44
 
45
+ 您可以使用以下代碼直接使用此模型進行日語動漫語音轉錄:
46
 
47
+ ```python
48
+ from transformers import pipeline
 
49
 
50
+ asr = pipeline("automatic-speech-recognition", model="hhim8826/whisper-large-v3-turbo-ja")
51
 
52
+ # 使用音訊檔案進行轉錄
53
+ result = asr("path/to/anime_audio.wav")
54
+ print(result["text"])
55
+ ```
56
 
57
+ 更詳細的用法示例:
58
 
59
+ ```python
60
+ from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
61
+ import torch
62
+ import librosa
63
 
64
+ # 載入模型和處理器
65
+ processor = AutoProcessor.from_pretrained("hhim8826/whisper-large-v3-turbo-ja")
66
+ model = AutoModelForSpeechSeq2Seq.from_pretrained("hhim8826/whisper-large-v3-turbo-ja").to("cuda")
67
 
68
+ # 載入音訊檔案
69
+ audio_file = 'anime_audio.wav'
70
+ audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
71
 
72
+ # 處理音訊輸入
73
+ inputs = processor(audio_array, sampling_rate=16000, return_tensors="pt").to("cuda")
74
 
75
+ # 進行推論
76
+ with torch.no_grad():
77
+ generated_ids = model.generate(inputs=inputs.input_features)
78
 
79
+ # 解碼輸出
80
+ transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
81
+ print(transcription)
82
+ ```
83
 
84
+ ### 下游應用
85
 
86
+ 此模型適用於:
87
+ - 動漫影片的自動字幕生成
88
+ - 動漫語音內容分析
89
+ - 日語動漫對話研究
90
+ - 日語動漫翻譯輔助工具
91
 
92
+ ## 訓練詳情
93
 
94
+ ### 訓練數據
95
 
96
+ 此模型使用 `hhim8826/japanese-anime-speech-v2-split` 資料集進行訓練,該資料集包含來自各種日本動漫的語音片段及其對應的文字轉錄。
97
 
98
+ ### 訓練過程
99
 
100
+ 模型從 `openai/whisper-large-v3-turbo` 開始,經過微調以適應動漫語音的特點。訓練在適當的迭代次數後停止,避免過擬合。
101
 
102
+ #### 訓練超參數
103
 
104
+ - **學習率:** 1e-5
105
+ - **訓練批次大小:** 16
106
+ - **訓練步數:** 4000
107
 
108
+ ## 評估結果
109
 
110
+ 在動漫語音測試集上,此模型相較於原始 Whisper 模型在以下方面有所改進:
111
+ - 更好地處理動漫專有名詞和特殊用語
112
+ - 對背景音樂/音效干擾下的對話識別能力提升
113
+ - 更準確地處理動漫角色特有的語調和說話方式
114
 
115
+ ## 局限性
116
 
117
+ - 主要針對日語動漫優化,對其他類型的日語內容可能效果不如專門模型
118
+ - 可能對某些非常小眾或特殊的動漫詞彙識別不足
119
+ - 對極端快速或含糊的對話可能仍有辨識困難