--- library_name: hivex original_train_name: DroneBasedReforestation_difficulty_6_task_1_run_id_1_train tags: - hivex - hivex-drone-based-reforestation - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-DBR-PPO-baseline-task-1-difficulty-6 results: - task: type: sub-task name: find_closest_forest_perimeter task-id: 1 difficulty-id: 6 dataset: name: hivex-drone-based-reforestation type: hivex-drone-based-reforestation metrics: - type: out_of_energy_count value: 0.010789197646081447 +/- 0.016001994100862754 name: Out of Energy Count verified: true - type: cumulative_reward value: 98.35338226318359 +/- 1.9403345148468187 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>1</code> with difficulty <code>6</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>1</code><br>Difficulty: <code>6</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) [hivex-paper]: https://arxiv.org/abs/2501.04180