|
{"current_steps": 5, "total_steps": 39, "loss": 0.6813, "accuracy": 0.3687500059604645, "learning_rate": 5e-07, "epoch": 0.36363636363636365, "percentage": 12.82, "elapsed_time": "0:02:52", "remaining_time": "0:19:33"} |
|
{"current_steps": 10, "total_steps": 39, "loss": 0.4811, "accuracy": 0.8125, "learning_rate": 1e-06, "epoch": 0.7272727272727273, "percentage": 25.64, "elapsed_time": "0:05:42", "remaining_time": "0:16:31"} |
|
{"current_steps": 15, "total_steps": 39, "loss": 0.3285, "accuracy": 0.856249988079071, "learning_rate": 9.284285880837946e-07, "epoch": 1.0909090909090908, "percentage": 38.46, "elapsed_time": "0:08:30", "remaining_time": "0:13:36"} |
|
{"current_steps": 20, "total_steps": 39, "loss": 0.1267, "accuracy": 0.9312499761581421, "learning_rate": 7.342042203498951e-07, "epoch": 1.4545454545454546, "percentage": 51.28, "elapsed_time": "0:11:19", "remaining_time": "0:10:45"} |
|
{"current_steps": 25, "total_steps": 39, "loss": 0.093, "accuracy": 0.9624999761581421, "learning_rate": 4.7293054570729126e-07, "epoch": 1.8181818181818183, "percentage": 64.1, "elapsed_time": "0:14:06", "remaining_time": "0:07:54"} |
|
{"current_steps": 30, "total_steps": 39, "loss": 0.0614, "accuracy": 0.981249988079071, "learning_rate": 2.1940646731880885e-07, "epoch": 2.1818181818181817, "percentage": 76.92, "elapsed_time": "0:16:56", "remaining_time": "0:05:04"} |
|
{"current_steps": 35, "total_steps": 39, "loss": 0.0241, "accuracy": 0.9937499761581421, "learning_rate": 4.621229016452155e-08, "epoch": 2.5454545454545454, "percentage": 89.74, "elapsed_time": "0:19:44", "remaining_time": "0:02:15"} |
|
{"current_steps": 39, "total_steps": 39, "epoch": 2.8363636363636364, "percentage": 100.0, "elapsed_time": "0:22:29", "remaining_time": "0:00:00"} |
|
|