|
{"current_steps": 5, "total_steps": 282, "loss": 0.6897, "accuracy": 0.39375001192092896, "learning_rate": 5e-07, "epoch": 0.052770448548812667, "percentage": 1.77, "elapsed_time": "0:02:56", "remaining_time": "2:42:55"} |
|
{"current_steps": 10, "total_steps": 282, "loss": 0.6204, "accuracy": 0.6499999761581421, "learning_rate": 1e-06, "epoch": 0.10554089709762533, "percentage": 3.55, "elapsed_time": "0:05:46", "remaining_time": "2:36:58"} |
|
{"current_steps": 15, "total_steps": 282, "loss": 0.5611, "accuracy": 0.71875, "learning_rate": 9.991664699681798e-07, "epoch": 0.158311345646438, "percentage": 5.32, "elapsed_time": "0:08:35", "remaining_time": "2:32:55"} |
|
{"current_steps": 20, "total_steps": 282, "loss": 0.5667, "accuracy": 0.8187500238418579, "learning_rate": 9.966686589619748e-07, "epoch": 0.21108179419525067, "percentage": 7.09, "elapsed_time": "0:11:25", "remaining_time": "2:29:37"} |
|
{"current_steps": 25, "total_steps": 282, "loss": 0.565, "accuracy": 0.75, "learning_rate": 9.925148949833354e-07, "epoch": 0.2638522427440633, "percentage": 8.87, "elapsed_time": "0:14:13", "remaining_time": "2:26:17"} |
|
{"current_steps": 30, "total_steps": 282, "loss": 0.5599, "accuracy": 0.793749988079071, "learning_rate": 9.867190271803463e-07, "epoch": 0.316622691292876, "percentage": 10.64, "elapsed_time": "0:17:04", "remaining_time": "2:23:22"} |
|
{"current_steps": 35, "total_steps": 282, "loss": 0.5654, "accuracy": 0.7749999761581421, "learning_rate": 9.793003796725049e-07, "epoch": 0.36939313984168864, "percentage": 12.41, "elapsed_time": "0:19:54", "remaining_time": "2:20:30"} |
|
{"current_steps": 40, "total_steps": 282, "loss": 0.4739, "accuracy": 0.8374999761581421, "learning_rate": 9.702836871217837e-07, "epoch": 0.42216358839050133, "percentage": 14.18, "elapsed_time": "0:22:42", "remaining_time": "2:17:25"} |
|
{"current_steps": 45, "total_steps": 282, "loss": 0.5017, "accuracy": 0.7749999761581421, "learning_rate": 9.596990122642983e-07, "epoch": 0.47493403693931396, "percentage": 15.96, "elapsed_time": "0:25:31", "remaining_time": "2:14:24"} |
|
{"current_steps": 50, "total_steps": 282, "loss": 0.513, "accuracy": 0.793749988079071, "learning_rate": 9.475816456775312e-07, "epoch": 0.5277044854881267, "percentage": 17.73, "elapsed_time": "0:28:20", "remaining_time": "2:11:29"} |
|
{"current_steps": 55, "total_steps": 282, "loss": 0.5447, "accuracy": 0.78125, "learning_rate": 9.339719881173092e-07, "epoch": 0.5804749340369393, "percentage": 19.5, "elapsed_time": "0:31:09", "remaining_time": "2:08:34"} |
|
{"current_steps": 60, "total_steps": 282, "loss": 0.5351, "accuracy": 0.7749999761581421, "learning_rate": 9.18915415816829e-07, "epoch": 0.633245382585752, "percentage": 21.28, "elapsed_time": "0:33:58", "remaining_time": "2:05:42"} |
|
{"current_steps": 65, "total_steps": 282, "loss": 0.5159, "accuracy": 0.8125, "learning_rate": 9.024621291968459e-07, "epoch": 0.6860158311345647, "percentage": 23.05, "elapsed_time": "0:36:46", "remaining_time": "2:02:47"} |
|
{"current_steps": 70, "total_steps": 282, "loss": 0.5269, "accuracy": 0.7562500238418579, "learning_rate": 8.846669854914395e-07, "epoch": 0.7387862796833773, "percentage": 24.82, "elapsed_time": "0:39:35", "remaining_time": "1:59:54"} |
|
{"current_steps": 75, "total_steps": 282, "loss": 0.5091, "accuracy": 0.737500011920929, "learning_rate": 8.655893158474054e-07, "epoch": 0.7915567282321899, "percentage": 26.6, "elapsed_time": "0:42:23", "remaining_time": "1:57:00"} |
|
{"current_steps": 80, "total_steps": 282, "loss": 0.5064, "accuracy": 0.78125, "learning_rate": 8.452927275070857e-07, "epoch": 0.8443271767810027, "percentage": 28.37, "elapsed_time": "0:45:13", "remaining_time": "1:54:10"} |
|
{"current_steps": 85, "total_steps": 282, "loss": 0.4882, "accuracy": 0.768750011920929, "learning_rate": 8.238448917341809e-07, "epoch": 0.8970976253298153, "percentage": 30.14, "elapsed_time": "0:48:01", "remaining_time": "1:51:17"} |
|
{"current_steps": 90, "total_steps": 282, "loss": 0.4649, "accuracy": 0.875, "learning_rate": 8.013173181896282e-07, "epoch": 0.9498680738786279, "percentage": 31.91, "elapsed_time": "0:50:50", "remaining_time": "1:48:28"} |
|
{"current_steps": 95, "total_steps": 282, "loss": 0.4735, "accuracy": 0.7875000238418579, "learning_rate": 7.777851165098011e-07, "epoch": 1.0026385224274406, "percentage": 33.69, "elapsed_time": "0:53:40", "remaining_time": "1:45:39"} |
|
{"current_steps": 100, "total_steps": 282, "loss": 0.1988, "accuracy": 0.9375, "learning_rate": 7.533267458819597e-07, "epoch": 1.0554089709762533, "percentage": 35.46, "elapsed_time": "0:56:29", "remaining_time": "1:42:49"} |
|
{"current_steps": 100, "total_steps": 282, "eval_loss": 0.45807966589927673, "epoch": 1.0554089709762533, "percentage": 35.46, "elapsed_time": "0:59:31", "remaining_time": "1:48:20"} |
|
{"current_steps": 105, "total_steps": 282, "loss": 0.1806, "accuracy": 0.9375, "learning_rate": 7.280237534518947e-07, "epoch": 1.108179419525066, "percentage": 37.23, "elapsed_time": "1:02:51", "remaining_time": "1:45:57"} |
|
{"current_steps": 110, "total_steps": 282, "loss": 0.1727, "accuracy": 0.9375, "learning_rate": 7.019605024359474e-07, "epoch": 1.1609498680738786, "percentage": 39.01, "elapsed_time": "1:05:40", "remaining_time": "1:42:42"} |
|
{"current_steps": 115, "total_steps": 282, "loss": 0.1747, "accuracy": 0.9624999761581421, "learning_rate": 6.75223890843913e-07, "epoch": 1.2137203166226913, "percentage": 40.78, "elapsed_time": "1:08:29", "remaining_time": "1:39:27"} |
|
{"current_steps": 120, "total_steps": 282, "loss": 0.168, "accuracy": 0.949999988079071, "learning_rate": 6.479030617506353e-07, "epoch": 1.266490765171504, "percentage": 42.55, "elapsed_time": "1:11:17", "remaining_time": "1:36:14"} |
|
{"current_steps": 125, "total_steps": 282, "loss": 0.18, "accuracy": 0.9624999761581421, "learning_rate": 6.200891060822883e-07, "epoch": 1.3192612137203166, "percentage": 44.33, "elapsed_time": "1:14:06", "remaining_time": "1:33:04"} |
|
{"current_steps": 130, "total_steps": 282, "loss": 0.1983, "accuracy": 0.9437500238418579, "learning_rate": 5.918747589082852e-07, "epoch": 1.3720316622691293, "percentage": 46.1, "elapsed_time": "1:16:53", "remaining_time": "1:29:53"} |
|
{"current_steps": 135, "total_steps": 282, "loss": 0.2006, "accuracy": 0.949999988079071, "learning_rate": 5.633540902514169e-07, "epoch": 1.424802110817942, "percentage": 47.87, "elapsed_time": "1:19:41", "remaining_time": "1:26:46"} |
|
{"current_steps": 140, "total_steps": 282, "loss": 0.2217, "accuracy": 0.918749988079071, "learning_rate": 5.346221914470958e-07, "epoch": 1.4775725593667546, "percentage": 49.65, "elapsed_time": "1:22:29", "remaining_time": "1:23:39"} |
|
{"current_steps": 145, "total_steps": 282, "loss": 0.2198, "accuracy": 0.9125000238418579, "learning_rate": 5.057748580974204e-07, "epoch": 1.5303430079155673, "percentage": 51.42, "elapsed_time": "1:25:18", "remaining_time": "1:20:36"} |
|
{"current_steps": 150, "total_steps": 282, "loss": 0.2577, "accuracy": 0.9125000238418579, "learning_rate": 4.769082706771303e-07, "epoch": 1.58311345646438, "percentage": 53.19, "elapsed_time": "1:28:05", "remaining_time": "1:17:30"} |
|
{"current_steps": 155, "total_steps": 282, "loss": 0.212, "accuracy": 0.949999988079071, "learning_rate": 4.481186738563491e-07, "epoch": 1.6358839050131926, "percentage": 54.96, "elapsed_time": "1:30:52", "remaining_time": "1:14:27"} |
|
{"current_steps": 160, "total_steps": 282, "loss": 0.2345, "accuracy": 0.9624999761581421, "learning_rate": 4.1950205560929346e-07, "epoch": 1.6886543535620053, "percentage": 56.74, "elapsed_time": "1:33:40", "remaining_time": "1:11:25"} |
|
{"current_steps": 165, "total_steps": 282, "loss": 0.2437, "accuracy": 0.9312499761581421, "learning_rate": 3.9115382717883583e-07, "epoch": 1.741424802110818, "percentage": 58.51, "elapsed_time": "1:36:29", "remaining_time": "1:08:24"} |
|
{"current_steps": 170, "total_steps": 282, "loss": 0.2303, "accuracy": 0.925000011920929, "learning_rate": 3.6316850496395855e-07, "epoch": 1.7941952506596306, "percentage": 60.28, "elapsed_time": "1:39:17", "remaining_time": "1:05:24"} |
|
{"current_steps": 175, "total_steps": 282, "loss": 0.2243, "accuracy": 0.90625, "learning_rate": 3.3563939539072707e-07, "epoch": 1.8469656992084431, "percentage": 62.06, "elapsed_time": "1:42:05", "remaining_time": "1:02:25"} |
|
{"current_steps": 180, "total_steps": 282, "loss": 0.2411, "accuracy": 0.9125000238418579, "learning_rate": 3.086582838174551e-07, "epoch": 1.899736147757256, "percentage": 63.83, "elapsed_time": "1:44:54", "remaining_time": "0:59:26"} |
|
{"current_steps": 185, "total_steps": 282, "loss": 0.1771, "accuracy": 0.9624999761581421, "learning_rate": 2.823151285112959e-07, "epoch": 1.9525065963060686, "percentage": 65.6, "elapsed_time": "1:47:43", "remaining_time": "0:56:28"} |
|
{"current_steps": 190, "total_steps": 282, "loss": 0.2033, "accuracy": 0.956250011920929, "learning_rate": 2.566977607165719e-07, "epoch": 2.005277044854881, "percentage": 67.38, "elapsed_time": "1:50:31", "remaining_time": "0:53:30"} |
|
{"current_steps": 195, "total_steps": 282, "loss": 0.0984, "accuracy": 0.981249988079071, "learning_rate": 2.3189159181485511e-07, "epoch": 2.058047493403694, "percentage": 69.15, "elapsed_time": "1:53:20", "remaining_time": "0:50:33"} |
|
{"current_steps": 200, "total_steps": 282, "loss": 0.0898, "accuracy": 0.949999988079071, "learning_rate": 2.079793285531618e-07, "epoch": 2.1108179419525066, "percentage": 70.92, "elapsed_time": "1:56:08", "remaining_time": "0:47:37"} |
|
{"current_steps": 200, "total_steps": 282, "eval_loss": 0.45805448293685913, "epoch": 2.1108179419525066, "percentage": 70.92, "elapsed_time": "1:59:08", "remaining_time": "0:48:51"} |
|
{"current_steps": 205, "total_steps": 282, "loss": 0.1351, "accuracy": 0.9437500238418579, "learning_rate": 1.8504069728972122e-07, "epoch": 2.163588390501319, "percentage": 72.7, "elapsed_time": "2:03:59", "remaining_time": "0:46:34"} |
|
{"current_steps": 210, "total_steps": 282, "loss": 0.1067, "accuracy": 0.949999988079071, "learning_rate": 1.631521781767214e-07, "epoch": 2.216358839050132, "percentage": 74.47, "elapsed_time": "2:06:48", "remaining_time": "0:43:28"} |
|
{"current_steps": 215, "total_steps": 282, "loss": 0.0998, "accuracy": 0.9624999761581421, "learning_rate": 1.4238675016629336e-07, "epoch": 2.2691292875989446, "percentage": 76.24, "elapsed_time": "2:09:35", "remaining_time": "0:40:23"} |
|
{"current_steps": 220, "total_steps": 282, "loss": 0.1052, "accuracy": 0.96875, "learning_rate": 1.2281364768991804e-07, "epoch": 2.321899736147757, "percentage": 78.01, "elapsed_time": "2:12:23", "remaining_time": "0:37:18"} |
|
{"current_steps": 225, "total_steps": 282, "loss": 0.1248, "accuracy": 0.9750000238418579, "learning_rate": 1.0449812982251554e-07, "epoch": 2.37467018469657, "percentage": 79.79, "elapsed_time": "2:15:11", "remaining_time": "0:34:14"} |
|
{"current_steps": 230, "total_steps": 282, "loss": 0.0959, "accuracy": 0.956250011920929, "learning_rate": 8.75012627008489e-08, "epoch": 2.4274406332453826, "percentage": 81.56, "elapsed_time": "2:18:00", "remaining_time": "0:31:12"} |
|
{"current_steps": 235, "total_steps": 282, "loss": 0.0977, "accuracy": 0.956250011920929, "learning_rate": 7.187971592168934e-08, "epoch": 2.480211081794195, "percentage": 83.33, "elapsed_time": "2:20:46", "remaining_time": "0:28:09"} |
|
{"current_steps": 240, "total_steps": 282, "loss": 0.1106, "accuracy": 0.949999988079071, "learning_rate": 5.76855735985724e-08, "epoch": 2.532981530343008, "percentage": 85.11, "elapsed_time": "2:23:35", "remaining_time": "0:25:07"} |
|
{"current_steps": 245, "total_steps": 282, "loss": 0.1081, "accuracy": 0.9750000238418579, "learning_rate": 4.4966160707107073e-08, "epoch": 2.5857519788918206, "percentage": 86.88, "elapsed_time": "2:26:23", "remaining_time": "0:22:06"} |
|
{"current_steps": 250, "total_steps": 282, "loss": 0.0921, "accuracy": 0.9750000238418579, "learning_rate": 3.376388529782215e-08, "epoch": 2.638522427440633, "percentage": 88.65, "elapsed_time": "2:29:12", "remaining_time": "0:19:05"} |
|
{"current_steps": 255, "total_steps": 282, "loss": 0.079, "accuracy": 0.96875, "learning_rate": 2.4116097102630906e-08, "epoch": 2.691292875989446, "percentage": 90.43, "elapsed_time": "2:31:59", "remaining_time": "0:16:05"} |
|
{"current_steps": 260, "total_steps": 282, "loss": 0.0941, "accuracy": 0.96875, "learning_rate": 1.605496300633874e-08, "epoch": 2.7440633245382586, "percentage": 92.2, "elapsed_time": "2:34:48", "remaining_time": "0:13:05"} |
|
{"current_steps": 265, "total_steps": 282, "loss": 0.0983, "accuracy": 0.981249988079071, "learning_rate": 9.607359798384784e-09, "epoch": 2.796833773087071, "percentage": 93.97, "elapsed_time": "2:37:37", "remaining_time": "0:10:06"} |
|
{"current_steps": 270, "total_steps": 282, "loss": 0.1101, "accuracy": 0.956250011920929, "learning_rate": 4.794784562397458e-09, "epoch": 2.849604221635884, "percentage": 95.74, "elapsed_time": "2:40:25", "remaining_time": "0:07:07"} |
|
{"current_steps": 275, "total_steps": 282, "loss": 0.1145, "accuracy": 0.9750000238418579, "learning_rate": 1.6332830023350065e-09, "epoch": 2.9023746701846966, "percentage": 97.52, "elapsed_time": "2:43:13", "remaining_time": "0:04:09"} |
|
{"current_steps": 280, "total_steps": 282, "loss": 0.0954, "accuracy": 0.9624999761581421, "learning_rate": 1.3339594418138035e-10, "epoch": 2.955145118733509, "percentage": 99.29, "elapsed_time": "2:46:00", "remaining_time": "0:01:11"} |
|
{"current_steps": 282, "total_steps": 282, "epoch": 2.9762532981530345, "percentage": 100.0, "elapsed_time": "2:47:37", "remaining_time": "0:00:00"} |
|
|