--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_Cherry_0_70 results: [] --- # AA_preference_Cherry_0_70 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_Cherry_0_70 dataset. It achieves the following results on the evaluation set: - Loss: 0.4557 - Rewards/chosen: 1.5899 - Rewards/rejected: -1.4032 - Rewards/accuracies: 0.8198 - Rewards/margins: 2.9930 - Logps/rejected: -237.9070 - Logps/chosen: -288.5520 - Logits/rejected: -2.0398 - Logits/chosen: -2.0633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1988 | 1.0554 | 100 | 0.4581 | 1.2441 | -0.7508 | 0.8052 | 1.9949 | -231.3840 | -292.0099 | -2.0274 | -2.0496 | | 0.0898 | 2.1108 | 200 | 0.4581 | 1.2188 | -1.4863 | 0.8285 | 2.7050 | -238.7381 | -292.2634 | -2.0389 | -2.0563 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3