|
{"current_steps": 5, "total_steps": 324, "loss": 0.6902, "accuracy": 0.34375, "learning_rate": 5e-07, "epoch": 0.046296296296296294, "percentage": 1.54, "elapsed_time": "0:02:52", "remaining_time": "3:03:30"} |
|
{"current_steps": 10, "total_steps": 324, "loss": 0.6271, "accuracy": 0.699999988079071, "learning_rate": 1e-06, "epoch": 0.09259259259259259, "percentage": 3.09, "elapsed_time": "0:05:40", "remaining_time": "2:58:19"} |
|
{"current_steps": 15, "total_steps": 324, "loss": 0.5716, "accuracy": 0.706250011920929, "learning_rate": 9.99374496282885e-07, "epoch": 0.1388888888888889, "percentage": 4.63, "elapsed_time": "0:08:29", "remaining_time": "2:55:02"} |
|
{"current_steps": 20, "total_steps": 324, "loss": 0.5987, "accuracy": 0.668749988079071, "learning_rate": 9.974995501511404e-07, "epoch": 0.18518518518518517, "percentage": 6.17, "elapsed_time": "0:11:20", "remaining_time": "2:52:18"} |
|
{"current_steps": 25, "total_steps": 324, "loss": 0.521, "accuracy": 0.7437499761581421, "learning_rate": 9.94379852747865e-07, "epoch": 0.23148148148148148, "percentage": 7.72, "elapsed_time": "0:14:11", "remaining_time": "2:49:39"} |
|
{"current_steps": 30, "total_steps": 324, "loss": 0.531, "accuracy": 0.7437499761581421, "learning_rate": 9.900232096023476e-07, "epoch": 0.2777777777777778, "percentage": 9.26, "elapsed_time": "0:17:00", "remaining_time": "2:46:39"} |
|
{"current_steps": 35, "total_steps": 324, "loss": 0.5109, "accuracy": 0.793749988079071, "learning_rate": 9.844405211005144e-07, "epoch": 0.32407407407407407, "percentage": 10.8, "elapsed_time": "0:19:50", "remaining_time": "2:43:47"} |
|
{"current_steps": 40, "total_steps": 324, "loss": 0.5478, "accuracy": 0.7437499761581421, "learning_rate": 9.776457552120033e-07, "epoch": 0.37037037037037035, "percentage": 12.35, "elapsed_time": "0:22:38", "remaining_time": "2:40:47"} |
|
{"current_steps": 45, "total_steps": 324, "loss": 0.5079, "accuracy": 0.7749999761581421, "learning_rate": 9.696559125420947e-07, "epoch": 0.4166666666666667, "percentage": 13.89, "elapsed_time": "0:25:28", "remaining_time": "2:37:57"} |
|
{"current_steps": 50, "total_steps": 324, "loss": 0.5413, "accuracy": 0.7875000238418579, "learning_rate": 9.604909837959454e-07, "epoch": 0.46296296296296297, "percentage": 15.43, "elapsed_time": "0:28:19", "remaining_time": "2:35:12"} |
|
{"current_steps": 55, "total_steps": 324, "loss": 0.5543, "accuracy": 0.7562500238418579, "learning_rate": 9.501738997615469e-07, "epoch": 0.5092592592592593, "percentage": 16.98, "elapsed_time": "0:31:07", "remaining_time": "2:32:15"} |
|
{"current_steps": 60, "total_steps": 324, "loss": 0.5365, "accuracy": 0.793749988079071, "learning_rate": 9.387304739365523e-07, "epoch": 0.5555555555555556, "percentage": 18.52, "elapsed_time": "0:33:57", "remaining_time": "2:29:24"} |
|
{"current_steps": 65, "total_steps": 324, "loss": 0.4985, "accuracy": 0.7437499761581421, "learning_rate": 9.261893379425217e-07, "epoch": 0.6018518518518519, "percentage": 20.06, "elapsed_time": "0:36:46", "remaining_time": "2:26:31"} |
|
{"current_steps": 70, "total_steps": 324, "loss": 0.5248, "accuracy": 0.7875000238418579, "learning_rate": 9.125818698881797e-07, "epoch": 0.6481481481481481, "percentage": 21.6, "elapsed_time": "0:39:36", "remaining_time": "2:23:42"} |
|
{"current_steps": 75, "total_steps": 324, "loss": 0.5172, "accuracy": 0.856249988079071, "learning_rate": 8.979421158609205e-07, "epoch": 0.6944444444444444, "percentage": 23.15, "elapsed_time": "0:42:24", "remaining_time": "2:20:46"} |
|
{"current_steps": 80, "total_steps": 324, "loss": 0.5542, "accuracy": 0.737500011920929, "learning_rate": 8.823067047429906e-07, "epoch": 0.7407407407407407, "percentage": 24.69, "elapsed_time": "0:45:12", "remaining_time": "2:17:52"} |
|
{"current_steps": 85, "total_steps": 324, "loss": 0.4855, "accuracy": 0.78125, "learning_rate": 8.657147565654818e-07, "epoch": 0.7870370370370371, "percentage": 26.23, "elapsed_time": "0:47:59", "remaining_time": "2:14:57"} |
|
{"current_steps": 90, "total_steps": 324, "loss": 0.4561, "accuracy": 0.7749999761581421, "learning_rate": 8.482077846294308e-07, "epoch": 0.8333333333333334, "percentage": 27.78, "elapsed_time": "0:50:49", "remaining_time": "2:12:09"} |
|
{"current_steps": 95, "total_steps": 324, "loss": 0.442, "accuracy": 0.8125, "learning_rate": 8.298295916389233e-07, "epoch": 0.8796296296296297, "percentage": 29.32, "elapsed_time": "0:53:37", "remaining_time": "2:09:14"} |
|
{"current_steps": 100, "total_steps": 324, "loss": 0.5761, "accuracy": 0.7562500238418579, "learning_rate": 8.106261601060772e-07, "epoch": 0.9259259259259259, "percentage": 30.86, "elapsed_time": "0:56:25", "remaining_time": "2:06:22"} |
|
{"current_steps": 100, "total_steps": 324, "eval_loss": 0.46477359533309937, "epoch": 0.9259259259259259, "percentage": 30.86, "elapsed_time": "0:59:53", "remaining_time": "2:14:10"} |
|
{"current_steps": 105, "total_steps": 324, "loss": 0.4873, "accuracy": 0.84375, "learning_rate": 7.906455373021128e-07, "epoch": 0.9722222222222222, "percentage": 32.41, "elapsed_time": "1:03:14", "remaining_time": "2:11:55"} |
|
{"current_steps": 110, "total_steps": 324, "loss": 0.3339, "accuracy": 0.824999988079071, "learning_rate": 7.699377150423672e-07, "epoch": 1.0185185185185186, "percentage": 33.95, "elapsed_time": "1:06:03", "remaining_time": "2:08:31"} |
|
{"current_steps": 115, "total_steps": 324, "loss": 0.1998, "accuracy": 0.9312499761581421, "learning_rate": 7.485545046060271e-07, "epoch": 1.0648148148148149, "percentage": 35.49, "elapsed_time": "1:08:53", "remaining_time": "2:05:12"} |
|
{"current_steps": 120, "total_steps": 324, "loss": 0.203, "accuracy": 0.925000011920929, "learning_rate": 7.265494071035401e-07, "epoch": 1.1111111111111112, "percentage": 37.04, "elapsed_time": "1:11:42", "remaining_time": "2:01:54"} |
|
{"current_steps": 125, "total_steps": 324, "loss": 0.1666, "accuracy": 0.9624999761581421, "learning_rate": 7.03977479616039e-07, "epoch": 1.1574074074074074, "percentage": 38.58, "elapsed_time": "1:14:30", "remaining_time": "1:58:36"} |
|
{"current_steps": 130, "total_steps": 324, "loss": 0.2098, "accuracy": 0.9375, "learning_rate": 6.808951974417076e-07, "epoch": 1.2037037037037037, "percentage": 40.12, "elapsed_time": "1:17:18", "remaining_time": "1:55:22"} |
|
{"current_steps": 135, "total_steps": 324, "loss": 0.2095, "accuracy": 0.9125000238418579, "learning_rate": 6.573603127937442e-07, "epoch": 1.25, "percentage": 41.67, "elapsed_time": "1:20:07", "remaining_time": "1:52:10"} |
|
{"current_steps": 140, "total_steps": 324, "loss": 0.2394, "accuracy": 0.9375, "learning_rate": 6.334317103034652e-07, "epoch": 1.2962962962962963, "percentage": 43.21, "elapsed_time": "1:22:54", "remaining_time": "1:48:58"} |
|
{"current_steps": 145, "total_steps": 324, "loss": 0.2448, "accuracy": 0.918749988079071, "learning_rate": 6.091692596900827e-07, "epoch": 1.3425925925925926, "percentage": 44.75, "elapsed_time": "1:25:43", "remaining_time": "1:45:49"} |
|
{"current_steps": 150, "total_steps": 324, "loss": 0.2189, "accuracy": 0.9375, "learning_rate": 5.84633665965777e-07, "epoch": 1.3888888888888888, "percentage": 46.3, "elapsed_time": "1:28:32", "remaining_time": "1:42:42"} |
|
{"current_steps": 155, "total_steps": 324, "loss": 0.2229, "accuracy": 0.9375, "learning_rate": 5.598863175508526e-07, "epoch": 1.4351851851851851, "percentage": 47.84, "elapsed_time": "1:31:20", "remaining_time": "1:39:35"} |
|
{"current_steps": 160, "total_steps": 324, "loss": 0.252, "accuracy": 0.956250011920929, "learning_rate": 5.349891326789986e-07, "epoch": 1.4814814814814814, "percentage": 49.38, "elapsed_time": "1:34:09", "remaining_time": "1:36:30"} |
|
{"current_steps": 165, "total_steps": 324, "loss": 0.2301, "accuracy": 0.9375, "learning_rate": 5.100044044769472e-07, "epoch": 1.5277777777777777, "percentage": 50.93, "elapsed_time": "1:36:57", "remaining_time": "1:33:26"} |
|
{"current_steps": 170, "total_steps": 324, "loss": 0.2143, "accuracy": 0.90625, "learning_rate": 4.849946451061443e-07, "epoch": 1.574074074074074, "percentage": 52.47, "elapsed_time": "1:39:45", "remaining_time": "1:30:22"} |
|
{"current_steps": 175, "total_steps": 324, "loss": 0.2712, "accuracy": 0.90625, "learning_rate": 4.6002242935639254e-07, "epoch": 1.6203703703703702, "percentage": 54.01, "elapsed_time": "1:42:34", "remaining_time": "1:27:19"} |
|
{"current_steps": 180, "total_steps": 324, "loss": 0.2378, "accuracy": 0.9312499761581421, "learning_rate": 4.351502380827958e-07, "epoch": 1.6666666666666665, "percentage": 55.56, "elapsed_time": "1:45:23", "remaining_time": "1:24:18"} |
|
{"current_steps": 185, "total_steps": 324, "loss": 0.2425, "accuracy": 0.925000011920929, "learning_rate": 4.104403018777323e-07, "epoch": 1.7129629629629628, "percentage": 57.1, "elapsed_time": "1:48:10", "remaining_time": "1:21:16"} |
|
{"current_steps": 190, "total_steps": 324, "loss": 0.2355, "accuracy": 0.925000011920929, "learning_rate": 3.8595444536898525e-07, "epoch": 1.7592592592592593, "percentage": 58.64, "elapsed_time": "1:50:58", "remaining_time": "1:18:15"} |
|
{"current_steps": 195, "total_steps": 324, "loss": 0.2361, "accuracy": 0.918749988079071, "learning_rate": 3.61753932533607e-07, "epoch": 1.8055555555555556, "percentage": 60.19, "elapsed_time": "1:53:45", "remaining_time": "1:15:15"} |
|
{"current_steps": 200, "total_steps": 324, "loss": 0.2547, "accuracy": 0.9437500238418579, "learning_rate": 3.3789931341453557e-07, "epoch": 1.8518518518518519, "percentage": 61.73, "elapsed_time": "1:56:33", "remaining_time": "1:12:15"} |
|
{"current_steps": 200, "total_steps": 324, "eval_loss": 0.46807482838630676, "epoch": 1.8518518518518519, "percentage": 61.73, "elapsed_time": "2:00:00", "remaining_time": "1:14:24"} |
|
{"current_steps": 205, "total_steps": 324, "loss": 0.2296, "accuracy": 0.9125000238418579, "learning_rate": 3.144502726234889e-07, "epoch": 1.8981481481481481, "percentage": 63.27, "elapsed_time": "2:03:23", "remaining_time": "1:11:37"} |
|
{"current_steps": 210, "total_steps": 324, "loss": 0.2326, "accuracy": 0.9312499761581421, "learning_rate": 2.9146548000917677e-07, "epoch": 1.9444444444444444, "percentage": 64.81, "elapsed_time": "2:06:12", "remaining_time": "1:08:30"} |
|
{"current_steps": 215, "total_steps": 324, "loss": 0.2649, "accuracy": 0.90625, "learning_rate": 2.69002443864469e-07, "epoch": 1.9907407407407407, "percentage": 66.36, "elapsed_time": "2:09:00", "remaining_time": "1:05:24"} |
|
{"current_steps": 220, "total_steps": 324, "loss": 0.1477, "accuracy": 0.956250011920929, "learning_rate": 2.4711736703979015e-07, "epoch": 2.037037037037037, "percentage": 67.9, "elapsed_time": "2:11:48", "remaining_time": "1:02:18"} |
|
{"current_steps": 225, "total_steps": 324, "loss": 0.1268, "accuracy": 0.9437500238418579, "learning_rate": 2.258650063227533e-07, "epoch": 2.0833333333333335, "percentage": 69.44, "elapsed_time": "2:14:37", "remaining_time": "0:59:14"} |
|
{"current_steps": 230, "total_steps": 324, "loss": 0.1228, "accuracy": 0.949999988079071, "learning_rate": 2.0529853543586216e-07, "epoch": 2.1296296296296298, "percentage": 70.99, "elapsed_time": "2:17:25", "remaining_time": "0:56:09"} |
|
{"current_steps": 235, "total_steps": 324, "loss": 0.0999, "accuracy": 0.9624999761581421, "learning_rate": 1.854694119950675e-07, "epoch": 2.175925925925926, "percentage": 72.53, "elapsed_time": "2:20:14", "remaining_time": "0:53:06"} |
|
{"current_steps": 240, "total_steps": 324, "loss": 0.1237, "accuracy": 0.981249988079071, "learning_rate": 1.6642724876204657e-07, "epoch": 2.2222222222222223, "percentage": 74.07, "elapsed_time": "2:23:02", "remaining_time": "0:50:03"} |
|
{"current_steps": 245, "total_steps": 324, "loss": 0.1055, "accuracy": 0.9750000238418579, "learning_rate": 1.4821968951233637e-07, "epoch": 2.2685185185185186, "percentage": 75.62, "elapsed_time": "2:25:51", "remaining_time": "0:47:01"} |
|
{"current_steps": 250, "total_steps": 324, "loss": 0.1124, "accuracy": 0.956250011920929, "learning_rate": 1.308922898298977e-07, "epoch": 2.314814814814815, "percentage": 77.16, "elapsed_time": "2:28:38", "remaining_time": "0:43:59"} |
|
{"current_steps": 255, "total_steps": 324, "loss": 0.1168, "accuracy": 0.9750000238418579, "learning_rate": 1.144884031263681e-07, "epoch": 2.361111111111111, "percentage": 78.7, "elapsed_time": "2:31:26", "remaining_time": "0:40:58"} |
|
{"current_steps": 260, "total_steps": 324, "loss": 0.0995, "accuracy": 0.987500011920929, "learning_rate": 9.904907217018e-08, "epoch": 2.4074074074074074, "percentage": 80.25, "elapsed_time": "2:34:16", "remaining_time": "0:37:58"} |
|
{"current_steps": 265, "total_steps": 324, "loss": 0.1143, "accuracy": 0.96875, "learning_rate": 8.461292639694517e-08, "epoch": 2.4537037037037037, "percentage": 81.79, "elapsed_time": "2:37:04", "remaining_time": "0:34:58"} |
|
{"current_steps": 270, "total_steps": 324, "loss": 0.1219, "accuracy": 0.9624999761581421, "learning_rate": 7.12160852580314e-08, "epoch": 2.5, "percentage": 83.33, "elapsed_time": "2:39:51", "remaining_time": "0:31:58"} |
|
{"current_steps": 275, "total_steps": 324, "loss": 0.1092, "accuracy": 0.9750000238418579, "learning_rate": 5.889206784915862e-08, "epoch": 2.5462962962962963, "percentage": 84.88, "elapsed_time": "2:42:40", "remaining_time": "0:28:59"} |
|
{"current_steps": 280, "total_steps": 324, "loss": 0.1131, "accuracy": 0.949999988079071, "learning_rate": 4.767170904512291e-08, "epoch": 2.5925925925925926, "percentage": 86.42, "elapsed_time": "2:45:28", "remaining_time": "0:26:00"} |
|
{"current_steps": 285, "total_steps": 324, "loss": 0.1039, "accuracy": 0.949999988079071, "learning_rate": 3.7583082350481573e-08, "epoch": 2.638888888888889, "percentage": 87.96, "elapsed_time": "2:48:17", "remaining_time": "0:23:01"} |
|
{"current_steps": 290, "total_steps": 324, "loss": 0.1165, "accuracy": 0.949999988079071, "learning_rate": 2.86514296592269e-08, "epoch": 2.685185185185185, "percentage": 89.51, "elapsed_time": "2:51:05", "remaining_time": "0:20:03"} |
|
{"current_steps": 295, "total_steps": 324, "loss": 0.1297, "accuracy": 0.9624999761581421, "learning_rate": 2.089909809919227e-08, "epoch": 2.7314814814814814, "percentage": 91.05, "elapsed_time": "2:53:54", "remaining_time": "0:17:05"} |
|
{"current_steps": 300, "total_steps": 324, "loss": 0.1018, "accuracy": 0.96875, "learning_rate": 1.434548411920622e-08, "epoch": 2.7777777777777777, "percentage": 92.59, "elapsed_time": "2:56:42", "remaining_time": "0:14:08"} |
|
{"current_steps": 300, "total_steps": 324, "eval_loss": 0.46450331807136536, "epoch": 2.7777777777777777, "percentage": 92.59, "elapsed_time": "3:00:09", "remaining_time": "0:14:24"} |
|
{"current_steps": 305, "total_steps": 324, "loss": 0.1352, "accuracy": 0.956250011920929, "learning_rate": 9.00698495888874e-09, "epoch": 2.824074074074074, "percentage": 94.14, "elapsed_time": "3:03:32", "remaining_time": "0:11:26"} |
|
{"current_steps": 310, "total_steps": 324, "loss": 0.1173, "accuracy": 0.981249988079071, "learning_rate": 4.8969576225142975e-09, "epoch": 2.8703703703703702, "percentage": 95.68, "elapsed_time": "3:06:20", "remaining_time": "0:08:24"} |
|
{"current_steps": 315, "total_steps": 324, "loss": 0.1309, "accuracy": 0.956250011920929, "learning_rate": 2.0256854595881446e-09, "epoch": 2.9166666666666665, "percentage": 97.22, "elapsed_time": "3:09:08", "remaining_time": "0:05:24"} |
|
{"current_steps": 320, "total_steps": 324, "loss": 0.1095, "accuracy": 0.96875, "learning_rate": 4.0035243575342604e-10, "epoch": 2.962962962962963, "percentage": 98.77, "elapsed_time": "3:11:56", "remaining_time": "0:02:23"} |
|
{"current_steps": 324, "total_steps": 324, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "3:14:45", "remaining_time": "0:00:00"} |
|
|