|
{"current_steps": 5, "total_steps": 363, "loss": 0.6888, "accuracy": 0.35624998807907104, "learning_rate": 5e-07, "epoch": 0.0411522633744856, "percentage": 1.38, "elapsed_time": "0:02:51", "remaining_time": "3:24:24"} |
|
{"current_steps": 10, "total_steps": 363, "loss": 0.6519, "accuracy": 0.675000011920929, "learning_rate": 1e-06, "epoch": 0.0823045267489712, "percentage": 2.75, "elapsed_time": "0:05:39", "remaining_time": "3:20:01"} |
|
{"current_steps": 15, "total_steps": 363, "loss": 0.5873, "accuracy": 0.731249988079071, "learning_rate": 9.995050530093366e-07, "epoch": 0.12345679012345678, "percentage": 4.13, "elapsed_time": "0:08:28", "remaining_time": "3:16:26"} |
|
{"current_steps": 20, "total_steps": 363, "loss": 0.6125, "accuracy": 0.706250011920929, "learning_rate": 9.980211919274406e-07, "epoch": 0.1646090534979424, "percentage": 5.51, "elapsed_time": "0:11:15", "remaining_time": "3:13:05"} |
|
{"current_steps": 25, "total_steps": 363, "loss": 0.5749, "accuracy": 0.8125, "learning_rate": 9.955513544846204e-07, "epoch": 0.205761316872428, "percentage": 6.89, "elapsed_time": "0:14:04", "remaining_time": "3:10:20"} |
|
{"current_steps": 30, "total_steps": 363, "loss": 0.5989, "accuracy": 0.7562500238418579, "learning_rate": 9.921004304353147e-07, "epoch": 0.24691358024691357, "percentage": 8.26, "elapsed_time": "0:16:54", "remaining_time": "3:07:46"} |
|
{"current_steps": 35, "total_steps": 363, "loss": 0.6076, "accuracy": 0.71875, "learning_rate": 9.876752518774164e-07, "epoch": 0.2880658436213992, "percentage": 9.64, "elapsed_time": "0:19:43", "remaining_time": "3:04:54"} |
|
{"current_steps": 40, "total_steps": 363, "loss": 0.5846, "accuracy": 0.731249988079071, "learning_rate": 9.822845797261675e-07, "epoch": 0.3292181069958848, "percentage": 11.02, "elapsed_time": "0:22:33", "remaining_time": "3:02:09"} |
|
{"current_steps": 45, "total_steps": 363, "loss": 0.5481, "accuracy": 0.7749999761581421, "learning_rate": 9.759390863694029e-07, "epoch": 0.37037037037037035, "percentage": 12.4, "elapsed_time": "0:25:22", "remaining_time": "2:59:16"} |
|
{"current_steps": 50, "total_steps": 363, "loss": 0.5652, "accuracy": 0.706250011920929, "learning_rate": 9.68651334538488e-07, "epoch": 0.411522633744856, "percentage": 13.77, "elapsed_time": "0:28:10", "remaining_time": "2:56:25"} |
|
{"current_steps": 55, "total_steps": 363, "loss": 0.5437, "accuracy": 0.699999988079071, "learning_rate": 9.604357524367722e-07, "epoch": 0.45267489711934156, "percentage": 15.15, "elapsed_time": "0:31:01", "remaining_time": "2:53:44"} |
|
{"current_steps": 60, "total_steps": 363, "loss": 0.5166, "accuracy": 0.8187500238418579, "learning_rate": 9.513086051748067e-07, "epoch": 0.49382716049382713, "percentage": 16.53, "elapsed_time": "0:33:50", "remaining_time": "2:50:53"} |
|
{"current_steps": 65, "total_steps": 363, "loss": 0.4848, "accuracy": 0.793749988079071, "learning_rate": 9.412879625688742e-07, "epoch": 0.5349794238683128, "percentage": 17.91, "elapsed_time": "0:36:40", "remaining_time": "2:48:06"} |
|
{"current_steps": 70, "total_steps": 363, "loss": 0.5289, "accuracy": 0.7562500238418579, "learning_rate": 9.303936633665839e-07, "epoch": 0.5761316872427984, "percentage": 19.28, "elapsed_time": "0:39:27", "remaining_time": "2:45:11"} |
|
{"current_steps": 75, "total_steps": 363, "loss": 0.5387, "accuracy": 0.762499988079071, "learning_rate": 9.186472759703578e-07, "epoch": 0.6172839506172839, "percentage": 20.66, "elapsed_time": "0:42:16", "remaining_time": "2:42:19"} |
|
{"current_steps": 80, "total_steps": 363, "loss": 0.524, "accuracy": 0.7875000238418579, "learning_rate": 9.060720557365682e-07, "epoch": 0.6584362139917695, "percentage": 22.04, "elapsed_time": "0:45:04", "remaining_time": "2:39:25"} |
|
{"current_steps": 85, "total_steps": 363, "loss": 0.5124, "accuracy": 0.8062499761581421, "learning_rate": 8.926928989348611e-07, "epoch": 0.6995884773662552, "percentage": 23.42, "elapsed_time": "0:47:53", "remaining_time": "2:36:39"} |
|
{"current_steps": 90, "total_steps": 363, "loss": 0.5073, "accuracy": 0.7875000238418579, "learning_rate": 8.785362934588233e-07, "epoch": 0.7407407407407407, "percentage": 24.79, "elapsed_time": "0:50:42", "remaining_time": "2:33:50"} |
|
{"current_steps": 95, "total_steps": 363, "loss": 0.4971, "accuracy": 0.8187500238418579, "learning_rate": 8.636302663855681e-07, "epoch": 0.7818930041152263, "percentage": 26.17, "elapsed_time": "0:53:31", "remaining_time": "2:30:58"} |
|
{"current_steps": 100, "total_steps": 363, "loss": 0.4674, "accuracy": 0.8374999761581421, "learning_rate": 8.480043284880664e-07, "epoch": 0.823045267489712, "percentage": 27.55, "elapsed_time": "0:56:19", "remaining_time": "2:28:06"} |
|
{"current_steps": 100, "total_steps": 363, "eval_loss": 0.4985389709472656, "epoch": 0.823045267489712, "percentage": 27.55, "elapsed_time": "1:00:09", "remaining_time": "2:38:12"} |
|
{"current_steps": 105, "total_steps": 363, "loss": 0.5036, "accuracy": 0.824999988079071, "learning_rate": 8.316894158100727e-07, "epoch": 0.8641975308641975, "percentage": 28.93, "elapsed_time": "1:03:28", "remaining_time": "2:35:58"} |
|
{"current_steps": 110, "total_steps": 363, "loss": 0.523, "accuracy": 0.8374999761581421, "learning_rate": 8.147178284193184e-07, "epoch": 0.9053497942386831, "percentage": 30.3, "elapsed_time": "1:06:17", "remaining_time": "2:32:28"} |
|
{"current_steps": 115, "total_steps": 363, "loss": 0.4781, "accuracy": 0.78125, "learning_rate": 7.971231664602271e-07, "epoch": 0.9465020576131687, "percentage": 31.68, "elapsed_time": "1:09:05", "remaining_time": "2:28:59"} |
|
{"current_steps": 120, "total_steps": 363, "loss": 0.4614, "accuracy": 0.8187500238418579, "learning_rate": 7.789402636327525e-07, "epoch": 0.9876543209876543, "percentage": 33.06, "elapsed_time": "1:11:54", "remaining_time": "2:25:36"} |
|
{"current_steps": 125, "total_steps": 363, "loss": 0.321, "accuracy": 0.9125000238418579, "learning_rate": 7.602051182290381e-07, "epoch": 1.02880658436214, "percentage": 34.44, "elapsed_time": "1:14:43", "remaining_time": "2:22:16"} |
|
{"current_steps": 130, "total_steps": 363, "loss": 0.1777, "accuracy": 0.949999988079071, "learning_rate": 7.409548218644331e-07, "epoch": 1.0699588477366255, "percentage": 35.81, "elapsed_time": "1:17:32", "remaining_time": "2:18:57"} |
|
{"current_steps": 135, "total_steps": 363, "loss": 0.2246, "accuracy": 0.8999999761581421, "learning_rate": 7.212274860439576e-07, "epoch": 1.1111111111111112, "percentage": 37.19, "elapsed_time": "1:20:19", "remaining_time": "2:15:39"} |
|
{"current_steps": 140, "total_steps": 363, "loss": 0.2218, "accuracy": 0.9375, "learning_rate": 7.010621667096041e-07, "epoch": 1.1522633744855968, "percentage": 38.57, "elapsed_time": "1:23:06", "remaining_time": "2:12:23"} |
|
{"current_steps": 145, "total_steps": 363, "loss": 0.2373, "accuracy": 0.9437500238418579, "learning_rate": 6.804987869178539e-07, "epoch": 1.1934156378600824, "percentage": 39.94, "elapsed_time": "1:25:53", "remaining_time": "2:09:08"} |
|
{"current_steps": 150, "total_steps": 363, "loss": 0.2196, "accuracy": 0.887499988079071, "learning_rate": 6.5957805780049e-07, "epoch": 1.2345679012345678, "percentage": 41.32, "elapsed_time": "1:28:42", "remaining_time": "2:05:57"} |
|
{"current_steps": 155, "total_steps": 363, "loss": 0.2229, "accuracy": 0.918749988079071, "learning_rate": 6.383413979651893e-07, "epoch": 1.2757201646090535, "percentage": 42.7, "elapsed_time": "1:31:30", "remaining_time": "2:02:47"} |
|
{"current_steps": 160, "total_steps": 363, "loss": 0.2121, "accuracy": 0.956250011920929, "learning_rate": 6.168308514954602e-07, "epoch": 1.316872427983539, "percentage": 44.08, "elapsed_time": "1:34:18", "remaining_time": "1:59:38"} |
|
{"current_steps": 165, "total_steps": 363, "loss": 0.2464, "accuracy": 0.887499988079071, "learning_rate": 5.950890047122741e-07, "epoch": 1.3580246913580247, "percentage": 45.45, "elapsed_time": "1:37:06", "remaining_time": "1:56:31"} |
|
{"current_steps": 170, "total_steps": 363, "loss": 0.2351, "accuracy": 0.9437500238418579, "learning_rate": 5.731589018621776e-07, "epoch": 1.3991769547325104, "percentage": 46.83, "elapsed_time": "1:39:54", "remaining_time": "1:53:25"} |
|
{"current_steps": 175, "total_steps": 363, "loss": 0.2069, "accuracy": 0.949999988079071, "learning_rate": 5.510839598988136e-07, "epoch": 1.4403292181069958, "percentage": 48.21, "elapsed_time": "1:42:41", "remaining_time": "1:50:19"} |
|
{"current_steps": 180, "total_steps": 363, "loss": 0.234, "accuracy": 0.893750011920929, "learning_rate": 5.289078825265572e-07, "epoch": 1.4814814814814814, "percentage": 49.59, "elapsed_time": "1:45:29", "remaining_time": "1:47:15"} |
|
{"current_steps": 185, "total_steps": 363, "loss": 0.2576, "accuracy": 0.90625, "learning_rate": 5.066745736764489e-07, "epoch": 1.522633744855967, "percentage": 50.96, "elapsed_time": "1:48:17", "remaining_time": "1:44:11"} |
|
{"current_steps": 190, "total_steps": 363, "loss": 0.2732, "accuracy": 0.925000011920929, "learning_rate": 4.844280505857202e-07, "epoch": 1.5637860082304527, "percentage": 52.34, "elapsed_time": "1:51:05", "remaining_time": "1:41:09"} |
|
{"current_steps": 195, "total_steps": 363, "loss": 0.2689, "accuracy": 0.90625, "learning_rate": 4.6221235665299684e-07, "epoch": 1.6049382716049383, "percentage": 53.72, "elapsed_time": "1:53:54", "remaining_time": "1:38:07"} |
|
{"current_steps": 200, "total_steps": 363, "loss": 0.2463, "accuracy": 0.887499988079071, "learning_rate": 4.400714742417091e-07, "epoch": 1.646090534979424, "percentage": 55.1, "elapsed_time": "1:56:42", "remaining_time": "1:35:07"} |
|
{"current_steps": 200, "total_steps": 363, "eval_loss": 0.5190241932868958, "epoch": 1.646090534979424, "percentage": 55.1, "elapsed_time": "2:00:30", "remaining_time": "1:38:12"} |
|
{"current_steps": 205, "total_steps": 363, "loss": 0.2475, "accuracy": 0.8999999761581421, "learning_rate": 4.180492376043371e-07, "epoch": 1.6872427983539096, "percentage": 56.47, "elapsed_time": "2:03:52", "remaining_time": "1:35:28"} |
|
{"current_steps": 210, "total_steps": 363, "loss": 0.2275, "accuracy": 0.9375, "learning_rate": 3.961892460998862e-07, "epoch": 1.7283950617283952, "percentage": 57.85, "elapsed_time": "2:06:39", "remaining_time": "1:32:17"} |
|
{"current_steps": 215, "total_steps": 363, "loss": 0.2558, "accuracy": 0.893750011920929, "learning_rate": 3.7453477787640077e-07, "epoch": 1.7695473251028808, "percentage": 59.23, "elapsed_time": "2:09:28", "remaining_time": "1:29:07"} |
|
{"current_steps": 220, "total_steps": 363, "loss": 0.2641, "accuracy": 0.9312499761581421, "learning_rate": 3.531287041894075e-07, "epoch": 1.8106995884773662, "percentage": 60.61, "elapsed_time": "2:12:16", "remaining_time": "1:25:58"} |
|
{"current_steps": 225, "total_steps": 363, "loss": 0.2836, "accuracy": 0.887499988079071, "learning_rate": 3.320134045259192e-07, "epoch": 1.8518518518518519, "percentage": 61.98, "elapsed_time": "2:15:05", "remaining_time": "1:22:51"} |
|
{"current_steps": 230, "total_steps": 363, "loss": 0.2967, "accuracy": 0.8999999761581421, "learning_rate": 3.112306827020377e-07, "epoch": 1.8930041152263375, "percentage": 63.36, "elapsed_time": "2:17:52", "remaining_time": "1:19:43"} |
|
{"current_steps": 235, "total_steps": 363, "loss": 0.2521, "accuracy": 0.9437500238418579, "learning_rate": 2.90821684100261e-07, "epoch": 1.934156378600823, "percentage": 64.74, "elapsed_time": "2:20:38", "remaining_time": "1:16:36"} |
|
{"current_steps": 240, "total_steps": 363, "loss": 0.2458, "accuracy": 0.9125000238418579, "learning_rate": 2.708268142103509e-07, "epoch": 1.9753086419753085, "percentage": 66.12, "elapsed_time": "2:23:26", "remaining_time": "1:13:31"} |
|
{"current_steps": 245, "total_steps": 363, "loss": 0.1875, "accuracy": 0.9624999761581421, "learning_rate": 2.5128565863503e-07, "epoch": 2.016460905349794, "percentage": 67.49, "elapsed_time": "2:26:14", "remaining_time": "1:10:26"} |
|
{"current_steps": 250, "total_steps": 363, "loss": 0.1218, "accuracy": 0.9375, "learning_rate": 2.3223690471888286e-07, "epoch": 2.05761316872428, "percentage": 68.87, "elapsed_time": "2:29:02", "remaining_time": "1:07:21"} |
|
{"current_steps": 255, "total_steps": 363, "loss": 0.146, "accuracy": 0.9312499761581421, "learning_rate": 2.1371826495561613e-07, "epoch": 2.0987654320987654, "percentage": 70.25, "elapsed_time": "2:31:50", "remaining_time": "1:04:18"} |
|
{"current_steps": 260, "total_steps": 363, "loss": 0.1171, "accuracy": 0.9624999761581421, "learning_rate": 1.9576640232531784e-07, "epoch": 2.139917695473251, "percentage": 71.63, "elapsed_time": "2:34:38", "remaining_time": "1:01:15"} |
|
{"current_steps": 265, "total_steps": 363, "loss": 0.1322, "accuracy": 0.9375, "learning_rate": 1.784168577095307e-07, "epoch": 2.1810699588477367, "percentage": 73.0, "elapsed_time": "2:37:25", "remaining_time": "0:58:13"} |
|
{"current_steps": 270, "total_steps": 363, "loss": 0.1229, "accuracy": 0.9624999761581421, "learning_rate": 1.6170397952784248e-07, "epoch": 2.2222222222222223, "percentage": 74.38, "elapsed_time": "2:40:13", "remaining_time": "0:55:11"} |
|
{"current_steps": 275, "total_steps": 363, "loss": 0.1305, "accuracy": 0.956250011920929, "learning_rate": 1.4566085573529874e-07, "epoch": 2.263374485596708, "percentage": 75.76, "elapsed_time": "2:43:02", "remaining_time": "0:52:10"} |
|
{"current_steps": 280, "total_steps": 363, "loss": 0.1162, "accuracy": 0.956250011920929, "learning_rate": 1.3031924831526737e-07, "epoch": 2.3045267489711936, "percentage": 77.13, "elapsed_time": "2:45:49", "remaining_time": "0:49:09"} |
|
{"current_steps": 285, "total_steps": 363, "loss": 0.1186, "accuracy": 0.956250011920929, "learning_rate": 1.1570953039744591e-07, "epoch": 2.3456790123456788, "percentage": 78.51, "elapsed_time": "2:48:37", "remaining_time": "0:46:09"} |
|
{"current_steps": 290, "total_steps": 363, "loss": 0.12, "accuracy": 0.9750000238418579, "learning_rate": 1.0186062612550616e-07, "epoch": 2.386831275720165, "percentage": 79.89, "elapsed_time": "2:51:25", "remaining_time": "0:43:09"} |
|
{"current_steps": 295, "total_steps": 363, "loss": 0.1167, "accuracy": 0.949999988079071, "learning_rate": 8.879995339342167e-08, "epoch": 2.42798353909465, "percentage": 81.27, "elapsed_time": "2:54:14", "remaining_time": "0:40:09"} |
|
{"current_steps": 300, "total_steps": 363, "loss": 0.1311, "accuracy": 0.981249988079071, "learning_rate": 7.655336956385155e-08, "epoch": 2.4691358024691357, "percentage": 82.64, "elapsed_time": "2:57:04", "remaining_time": "0:37:11"} |
|
{"current_steps": 300, "total_steps": 363, "eval_loss": 0.5211819410324097, "epoch": 2.4691358024691357, "percentage": 82.64, "elapsed_time": "3:00:52", "remaining_time": "0:37:58"} |
|
{"current_steps": 305, "total_steps": 363, "loss": 0.1173, "accuracy": 0.949999988079071, "learning_rate": 6.514512027604508e-08, "epoch": 2.5102880658436213, "percentage": 84.02, "elapsed_time": "3:04:13", "remaining_time": "0:35:01"} |
|
{"current_steps": 310, "total_steps": 363, "loss": 0.132, "accuracy": 0.925000011920929, "learning_rate": 5.459779144461712e-08, "epoch": 2.551440329218107, "percentage": 85.4, "elapsed_time": "3:07:01", "remaining_time": "0:31:58"} |
|
{"current_steps": 315, "total_steps": 363, "loss": 0.1327, "accuracy": 0.9375, "learning_rate": 4.49322645442266e-08, "epoch": 2.5925925925925926, "percentage": 86.78, "elapsed_time": "3:09:49", "remaining_time": "0:28:55"} |
|
{"current_steps": 320, "total_steps": 363, "loss": 0.1062, "accuracy": 0.9750000238418579, "learning_rate": 3.616767526868353e-08, "epoch": 2.633744855967078, "percentage": 88.15, "elapsed_time": "3:12:38", "remaining_time": "0:25:53"} |
|
{"current_steps": 325, "total_steps": 363, "loss": 0.1209, "accuracy": 0.9624999761581421, "learning_rate": 2.8321375646333023e-08, "epoch": 2.674897119341564, "percentage": 89.53, "elapsed_time": "3:15:26", "remaining_time": "0:22:51"} |
|
{"current_steps": 330, "total_steps": 363, "loss": 0.1195, "accuracy": 0.956250011920929, "learning_rate": 2.1408899686718996e-08, "epoch": 2.7160493827160495, "percentage": 90.91, "elapsed_time": "3:18:13", "remaining_time": "0:19:49"} |
|
{"current_steps": 335, "total_steps": 363, "loss": 0.15, "accuracy": 0.9312499761581421, "learning_rate": 1.5443932626538314e-08, "epoch": 2.757201646090535, "percentage": 92.29, "elapsed_time": "3:21:00", "remaining_time": "0:16:48"} |
|
{"current_steps": 340, "total_steps": 363, "loss": 0.1257, "accuracy": 0.925000011920929, "learning_rate": 1.0438283835774387e-08, "epoch": 2.7983539094650207, "percentage": 93.66, "elapsed_time": "3:23:47", "remaining_time": "0:13:47"} |
|
{"current_steps": 345, "total_steps": 363, "loss": 0.1265, "accuracy": 0.9437500238418579, "learning_rate": 6.401863437648481e-09, "epoch": 2.8395061728395063, "percentage": 95.04, "elapsed_time": "3:26:35", "remaining_time": "0:10:46"} |
|
{"current_steps": 350, "total_steps": 363, "loss": 0.1582, "accuracy": 0.949999988079071, "learning_rate": 3.3426626886769448e-09, "epoch": 2.8806584362139915, "percentage": 96.42, "elapsed_time": "3:29:23", "remaining_time": "0:07:46"} |
|
{"current_steps": 355, "total_steps": 363, "loss": 0.1363, "accuracy": 0.9437500238418579, "learning_rate": 1.2667381576779712e-09, "epoch": 2.9218106995884776, "percentage": 97.8, "elapsed_time": "3:32:12", "remaining_time": "0:04:46"} |
|
{"current_steps": 360, "total_steps": 363, "loss": 0.1258, "accuracy": 0.9437500238418579, "learning_rate": 1.7819973504940023e-10, "epoch": 2.962962962962963, "percentage": 99.17, "elapsed_time": "3:35:00", "remaining_time": "0:01:47"} |
|
{"current_steps": 363, "total_steps": 363, "epoch": 2.9876543209876543, "percentage": 100.0, "elapsed_time": "3:37:13", "remaining_time": "0:00:00"} |
|
|