--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_cocour_0_50 results: [] --- # AA_preference_cocour_0_50 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cocour_0_50 dataset. It achieves the following results on the evaluation set: - Loss: 0.4988 - Rewards/chosen: 0.9568 - Rewards/rejected: -1.9780 - Rewards/accuracies: 0.8500 - Rewards/margins: 2.9348 - Logps/rejected: -217.8485 - Logps/chosen: -263.8239 - Logits/rejected: -2.1050 - Logits/chosen: -2.1590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6027 | 0.7463 | 50 | 0.5491 | 1.3803 | -0.2983 | 0.8208 | 1.6786 | -201.0510 | -259.5887 | -2.4356 | -2.4575 | | 0.2795 | 1.4925 | 100 | 0.5112 | 1.1590 | -1.5093 | 0.8417 | 2.6683 | -213.1614 | -261.8016 | -1.9102 | -1.9756 | | 0.1557 | 2.2388 | 150 | 0.5033 | 1.3754 | -1.3325 | 0.8583 | 2.7079 | -211.3931 | -259.6372 | -2.1170 | -2.1696 | | 0.1338 | 2.9851 | 200 | 0.4983 | 0.9563 | -1.9762 | 0.8500 | 2.9325 | -217.8308 | -263.8291 | -2.1047 | -2.1588 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3