|
{"current_steps": 5, "total_steps": 78, "loss": 0.6919, "accuracy": 0.2874999940395355, "learning_rate": 5e-07, "epoch": 0.18691588785046728, "percentage": 6.41, "elapsed_time": "0:02:54", "remaining_time": "0:42:28"} |
|
{"current_steps": 10, "total_steps": 78, "loss": 0.6511, "accuracy": 0.7437499761581421, "learning_rate": 1e-06, "epoch": 0.37383177570093457, "percentage": 12.82, "elapsed_time": "0:05:42", "remaining_time": "0:38:50"} |
|
{"current_steps": 15, "total_steps": 78, "loss": 0.6036, "accuracy": 0.6625000238418579, "learning_rate": 9.867190271803463e-07, "epoch": 0.5607476635514018, "percentage": 19.23, "elapsed_time": "0:08:32", "remaining_time": "0:35:51"} |
|
{"current_steps": 20, "total_steps": 78, "loss": 0.6198, "accuracy": 0.737500011920929, "learning_rate": 9.475816456775312e-07, "epoch": 0.7476635514018691, "percentage": 25.64, "elapsed_time": "0:11:19", "remaining_time": "0:32:49"} |
|
{"current_steps": 25, "total_steps": 78, "loss": 0.6654, "accuracy": 0.71875, "learning_rate": 8.846669854914395e-07, "epoch": 0.9345794392523364, "percentage": 32.05, "elapsed_time": "0:14:07", "remaining_time": "0:29:57"} |
|
{"current_steps": 30, "total_steps": 78, "loss": 0.3766, "accuracy": 0.856249988079071, "learning_rate": 8.013173181896282e-07, "epoch": 1.1214953271028036, "percentage": 38.46, "elapsed_time": "0:16:57", "remaining_time": "0:27:07"} |
|
{"current_steps": 35, "total_steps": 78, "loss": 0.2353, "accuracy": 0.96875, "learning_rate": 7.019605024359474e-07, "epoch": 1.308411214953271, "percentage": 44.87, "elapsed_time": "0:19:45", "remaining_time": "0:24:16"} |
|
{"current_steps": 40, "total_steps": 78, "loss": 0.2308, "accuracy": 0.9437500238418579, "learning_rate": 5.918747589082852e-07, "epoch": 1.4953271028037383, "percentage": 51.28, "elapsed_time": "0:22:35", "remaining_time": "0:21:27"} |
|
{"current_steps": 45, "total_steps": 78, "loss": 0.2041, "accuracy": 0.918749988079071, "learning_rate": 4.769082706771303e-07, "epoch": 1.6822429906542056, "percentage": 57.69, "elapsed_time": "0:25:24", "remaining_time": "0:18:37"} |
|
{"current_steps": 50, "total_steps": 78, "loss": 0.219, "accuracy": 0.925000011920929, "learning_rate": 3.6316850496395855e-07, "epoch": 1.8691588785046729, "percentage": 64.1, "elapsed_time": "0:28:13", "remaining_time": "0:15:48"} |
|
{"current_steps": 50, "total_steps": 78, "eval_loss": 0.6225951313972473, "epoch": 1.8691588785046729, "percentage": 64.1, "elapsed_time": "0:29:05", "remaining_time": "0:16:17"} |
|
{"current_steps": 55, "total_steps": 78, "loss": 0.2486, "accuracy": 0.925000011920929, "learning_rate": 2.566977607165719e-07, "epoch": 2.05607476635514, "percentage": 70.51, "elapsed_time": "0:31:53", "remaining_time": "0:13:20"} |
|
{"current_steps": 60, "total_steps": 78, "loss": 0.1282, "accuracy": 0.9750000238418579, "learning_rate": 1.631521781767214e-07, "epoch": 2.2429906542056073, "percentage": 76.92, "elapsed_time": "0:34:41", "remaining_time": "0:10:24"} |
|
{"current_steps": 65, "total_steps": 78, "loss": 0.1274, "accuracy": 0.9750000238418579, "learning_rate": 8.75012627008489e-08, "epoch": 2.4299065420560746, "percentage": 83.33, "elapsed_time": "0:37:29", "remaining_time": "0:07:29"} |
|
{"current_steps": 70, "total_steps": 78, "loss": 0.1198, "accuracy": 0.9624999761581421, "learning_rate": 3.376388529782215e-08, "epoch": 2.616822429906542, "percentage": 89.74, "elapsed_time": "0:40:18", "remaining_time": "0:04:36"} |
|
{"current_steps": 75, "total_steps": 78, "loss": 0.1229, "accuracy": 0.981249988079071, "learning_rate": 4.794784562397458e-09, "epoch": 2.803738317757009, "percentage": 96.15, "elapsed_time": "0:43:06", "remaining_time": "0:01:43"} |
|
{"current_steps": 78, "total_steps": 78, "epoch": 2.9158878504672896, "percentage": 100.0, "elapsed_time": "0:45:17", "remaining_time": "0:00:00"} |
|
|