htlou's picture
Upload folder using huggingface_hub
863653a verified
{"current_steps": 5, "total_steps": 321, "loss": 0.6905, "accuracy": 0.33125001192092896, "learning_rate": 5e-07, "epoch": 0.04672897196261682, "percentage": 1.56, "elapsed_time": "0:02:55", "remaining_time": "3:04:27"}
{"current_steps": 10, "total_steps": 321, "loss": 0.6502, "accuracy": 0.637499988079071, "learning_rate": 1e-06, "epoch": 0.09345794392523364, "percentage": 3.12, "elapsed_time": "0:05:44", "remaining_time": "2:58:37"}
{"current_steps": 15, "total_steps": 321, "loss": 0.6521, "accuracy": 0.668749988079071, "learning_rate": 9.993623730611148e-07, "epoch": 0.14018691588785046, "percentage": 4.67, "elapsed_time": "0:08:32", "remaining_time": "2:54:07"}
{"current_steps": 20, "total_steps": 321, "loss": 0.6234, "accuracy": 0.668749988079071, "learning_rate": 9.97451118516912e-07, "epoch": 0.18691588785046728, "percentage": 6.23, "elapsed_time": "0:11:21", "remaining_time": "2:50:57"}
{"current_steps": 25, "total_steps": 321, "loss": 0.6435, "accuracy": 0.6875, "learning_rate": 9.94271111036929e-07, "epoch": 0.2336448598130841, "percentage": 7.79, "elapsed_time": "0:14:11", "remaining_time": "2:47:58"}
{"current_steps": 30, "total_steps": 321, "loss": 0.6003, "accuracy": 0.706250011920929, "learning_rate": 9.898304612549066e-07, "epoch": 0.2803738317757009, "percentage": 9.35, "elapsed_time": "0:16:58", "remaining_time": "2:44:43"}
{"current_steps": 35, "total_steps": 321, "loss": 0.5919, "accuracy": 0.7437499761581421, "learning_rate": 9.841404950825536e-07, "epoch": 0.32710280373831774, "percentage": 10.9, "elapsed_time": "0:19:47", "remaining_time": "2:41:41"}
{"current_steps": 40, "total_steps": 321, "loss": 0.648, "accuracy": 0.7124999761581421, "learning_rate": 9.77215724822721e-07, "epoch": 0.37383177570093457, "percentage": 12.46, "elapsed_time": "0:22:36", "remaining_time": "2:38:47"}
{"current_steps": 45, "total_steps": 321, "loss": 0.5918, "accuracy": 0.699999988079071, "learning_rate": 9.69073812155662e-07, "epoch": 0.4205607476635514, "percentage": 14.02, "elapsed_time": "0:25:24", "remaining_time": "2:35:53"}
{"current_steps": 50, "total_steps": 321, "loss": 0.576, "accuracy": 0.8187500238418579, "learning_rate": 9.597355230927788e-07, "epoch": 0.4672897196261682, "percentage": 15.58, "elapsed_time": "0:28:12", "remaining_time": "2:32:52"}
{"current_steps": 50, "total_steps": 321, "eval_loss": 0.5725350379943848, "epoch": 0.4672897196261682, "percentage": 15.58, "elapsed_time": "0:31:35", "remaining_time": "2:51:13"}
{"current_steps": 55, "total_steps": 321, "loss": 0.5771, "accuracy": 0.7437499761581421, "learning_rate": 9.4922467501275e-07, "epoch": 0.514018691588785, "percentage": 17.13, "elapsed_time": "0:34:23", "remaining_time": "2:46:18"}
{"current_steps": 60, "total_steps": 321, "loss": 0.5856, "accuracy": 0.7749999761581421, "learning_rate": 9.375680759151206e-07, "epoch": 0.5607476635514018, "percentage": 18.69, "elapsed_time": "0:37:09", "remaining_time": "2:41:39"}
{"current_steps": 65, "total_steps": 321, "loss": 0.5815, "accuracy": 0.75, "learning_rate": 9.247954560462927e-07, "epoch": 0.6074766355140186, "percentage": 20.25, "elapsed_time": "0:39:58", "remaining_time": "2:37:26"}
{"current_steps": 70, "total_steps": 321, "loss": 0.5626, "accuracy": 0.7562500238418579, "learning_rate": 9.109393920723001e-07, "epoch": 0.6542056074766355, "percentage": 21.81, "elapsed_time": "0:42:46", "remaining_time": "2:33:22"}
{"current_steps": 75, "total_steps": 321, "loss": 0.5982, "accuracy": 0.7749999761581421, "learning_rate": 8.960352239917699e-07, "epoch": 0.7009345794392523, "percentage": 23.36, "elapsed_time": "0:45:33", "remaining_time": "2:29:26"}
{"current_steps": 80, "total_steps": 321, "loss": 0.4956, "accuracy": 0.731249988079071, "learning_rate": 8.801209650009814e-07, "epoch": 0.7476635514018691, "percentage": 24.92, "elapsed_time": "0:48:21", "remaining_time": "2:25:40"}
{"current_steps": 85, "total_steps": 321, "loss": 0.5527, "accuracy": 0.731249988079071, "learning_rate": 8.632372045409141e-07, "epoch": 0.794392523364486, "percentage": 26.48, "elapsed_time": "0:51:10", "remaining_time": "2:22:04"}
{"current_steps": 90, "total_steps": 321, "loss": 0.5291, "accuracy": 0.8125, "learning_rate": 8.454270047735642e-07, "epoch": 0.8411214953271028, "percentage": 28.04, "elapsed_time": "0:53:59", "remaining_time": "2:18:33"}
{"current_steps": 95, "total_steps": 321, "loss": 0.531, "accuracy": 0.71875, "learning_rate": 8.267357907515661e-07, "epoch": 0.8878504672897196, "percentage": 29.6, "elapsed_time": "0:56:47", "remaining_time": "2:15:05"}
{"current_steps": 100, "total_steps": 321, "loss": 0.508, "accuracy": 0.7749999761581421, "learning_rate": 8.072112345612433e-07, "epoch": 0.9345794392523364, "percentage": 31.15, "elapsed_time": "0:59:34", "remaining_time": "2:11:40"}
{"current_steps": 100, "total_steps": 321, "eval_loss": 0.5507261753082275, "epoch": 0.9345794392523364, "percentage": 31.15, "elapsed_time": "1:02:57", "remaining_time": "2:19:08"}
{"current_steps": 105, "total_steps": 321, "loss": 0.5141, "accuracy": 0.7875000238418579, "learning_rate": 7.869031337345827e-07, "epoch": 0.9813084112149533, "percentage": 32.71, "elapsed_time": "1:06:16", "remaining_time": "2:16:20"}
{"current_steps": 110, "total_steps": 321, "loss": 0.3938, "accuracy": 0.893750011920929, "learning_rate": 7.658632842402432e-07, "epoch": 1.02803738317757, "percentage": 34.27, "elapsed_time": "1:09:04", "remaining_time": "2:12:30"}
{"current_steps": 115, "total_steps": 321, "loss": 0.2137, "accuracy": 0.9312499761581421, "learning_rate": 7.441453483775353e-07, "epoch": 1.074766355140187, "percentage": 35.83, "elapsed_time": "1:11:53", "remaining_time": "2:08:45"}
{"current_steps": 120, "total_steps": 321, "loss": 0.2323, "accuracy": 0.8812500238418579, "learning_rate": 7.218047179103112e-07, "epoch": 1.1214953271028036, "percentage": 37.38, "elapsed_time": "1:14:41", "remaining_time": "2:05:07"}
{"current_steps": 125, "total_steps": 321, "loss": 0.2211, "accuracy": 0.9125000238418579, "learning_rate": 6.988983727898413e-07, "epoch": 1.1682242990654206, "percentage": 38.94, "elapsed_time": "1:17:30", "remaining_time": "2:01:32"}
{"current_steps": 130, "total_steps": 321, "loss": 0.2316, "accuracy": 0.925000011920929, "learning_rate": 6.754847358270066e-07, "epoch": 1.2149532710280373, "percentage": 40.5, "elapsed_time": "1:20:17", "remaining_time": "1:57:58"}
{"current_steps": 135, "total_steps": 321, "loss": 0.2412, "accuracy": 0.9125000238418579, "learning_rate": 6.516235236844661e-07, "epoch": 1.2616822429906542, "percentage": 42.06, "elapsed_time": "1:23:05", "remaining_time": "1:54:29"}
{"current_steps": 140, "total_steps": 321, "loss": 0.2808, "accuracy": 0.8999999761581421, "learning_rate": 6.273755945688457e-07, "epoch": 1.308411214953271, "percentage": 43.61, "elapsed_time": "1:25:53", "remaining_time": "1:51:02"}
{"current_steps": 145, "total_steps": 321, "loss": 0.2369, "accuracy": 0.893750011920929, "learning_rate": 6.02802793011411e-07, "epoch": 1.355140186915888, "percentage": 45.17, "elapsed_time": "1:28:41", "remaining_time": "1:47:39"}
{"current_steps": 150, "total_steps": 321, "loss": 0.2512, "accuracy": 0.8999999761581421, "learning_rate": 5.779677921331093e-07, "epoch": 1.4018691588785046, "percentage": 46.73, "elapsed_time": "1:31:28", "remaining_time": "1:44:17"}
{"current_steps": 150, "total_steps": 321, "eval_loss": 0.5608044266700745, "epoch": 1.4018691588785046, "percentage": 46.73, "elapsed_time": "1:34:51", "remaining_time": "1:48:08"}
{"current_steps": 155, "total_steps": 321, "loss": 0.263, "accuracy": 0.90625, "learning_rate": 5.529339337962897e-07, "epoch": 1.4485981308411215, "percentage": 48.29, "elapsed_time": "1:37:39", "remaining_time": "1:44:35"}
{"current_steps": 160, "total_steps": 321, "loss": 0.2479, "accuracy": 0.862500011920929, "learning_rate": 5.277650670507915e-07, "epoch": 1.4953271028037383, "percentage": 49.84, "elapsed_time": "1:40:28", "remaining_time": "1:41:05"}
{"current_steps": 165, "total_steps": 321, "loss": 0.3032, "accuracy": 0.918749988079071, "learning_rate": 5.025253852864471e-07, "epoch": 1.542056074766355, "percentage": 51.4, "elapsed_time": "1:43:16", "remaining_time": "1:37:38"}
{"current_steps": 170, "total_steps": 321, "loss": 0.2779, "accuracy": 0.8999999761581421, "learning_rate": 4.77279262507344e-07, "epoch": 1.588785046728972, "percentage": 52.96, "elapsed_time": "1:46:04", "remaining_time": "1:34:12"}
{"current_steps": 175, "total_steps": 321, "loss": 0.2673, "accuracy": 0.90625, "learning_rate": 4.5209108914542714e-07, "epoch": 1.6355140186915889, "percentage": 54.52, "elapsed_time": "1:48:52", "remaining_time": "1:30:49"}
{"current_steps": 180, "total_steps": 321, "loss": 0.2941, "accuracy": 0.893750011920929, "learning_rate": 4.2702510783220475e-07, "epoch": 1.6822429906542056, "percentage": 56.07, "elapsed_time": "1:51:39", "remaining_time": "1:27:27"}
{"current_steps": 185, "total_steps": 321, "loss": 0.2928, "accuracy": 0.8999999761581421, "learning_rate": 4.0214524954741586e-07, "epoch": 1.7289719626168223, "percentage": 57.63, "elapsed_time": "1:54:27", "remaining_time": "1:24:08"}
{"current_steps": 190, "total_steps": 321, "loss": 0.2656, "accuracy": 0.8999999761581421, "learning_rate": 3.7751497056257305e-07, "epoch": 1.7757009345794392, "percentage": 59.19, "elapsed_time": "1:57:15", "remaining_time": "1:20:50"}
{"current_steps": 195, "total_steps": 321, "loss": 0.2689, "accuracy": 0.8999999761581421, "learning_rate": 3.531970905952478e-07, "epoch": 1.8224299065420562, "percentage": 60.75, "elapsed_time": "2:00:02", "remaining_time": "1:17:33"}
{"current_steps": 200, "total_steps": 321, "loss": 0.3125, "accuracy": 0.875, "learning_rate": 3.2925363258689553e-07, "epoch": 1.8691588785046729, "percentage": 62.31, "elapsed_time": "2:02:52", "remaining_time": "1:14:20"}
{"current_steps": 200, "total_steps": 321, "eval_loss": 0.5447002649307251, "epoch": 1.8691588785046729, "percentage": 62.31, "elapsed_time": "2:06:15", "remaining_time": "1:16:22"}
{"current_steps": 205, "total_steps": 321, "loss": 0.2768, "accuracy": 0.84375, "learning_rate": 3.0574566451286086e-07, "epoch": 1.9158878504672896, "percentage": 63.86, "elapsed_time": "2:09:34", "remaining_time": "1:13:19"}
{"current_steps": 210, "total_steps": 321, "loss": 0.2995, "accuracy": 0.925000011920929, "learning_rate": 2.8273314362803333e-07, "epoch": 1.9626168224299065, "percentage": 65.42, "elapsed_time": "2:12:22", "remaining_time": "1:09:58"}
{"current_steps": 215, "total_steps": 321, "loss": 0.2074, "accuracy": 0.956250011920929, "learning_rate": 2.602747635454047e-07, "epoch": 2.0093457943925235, "percentage": 66.98, "elapsed_time": "2:15:10", "remaining_time": "1:06:38"}
{"current_steps": 220, "total_steps": 321, "loss": 0.1558, "accuracy": 0.9437500238418579, "learning_rate": 2.384278045375523e-07, "epoch": 2.05607476635514, "percentage": 68.54, "elapsed_time": "2:17:58", "remaining_time": "1:03:20"}
{"current_steps": 225, "total_steps": 321, "loss": 0.1566, "accuracy": 0.925000011920929, "learning_rate": 2.1724798744286071e-07, "epoch": 2.102803738317757, "percentage": 70.09, "elapsed_time": "2:20:46", "remaining_time": "1:00:03"}
{"current_steps": 230, "total_steps": 321, "loss": 0.1615, "accuracy": 0.956250011920929, "learning_rate": 1.9678933154909095e-07, "epoch": 2.149532710280374, "percentage": 71.65, "elapsed_time": "2:23:34", "remaining_time": "0:56:48"}
{"current_steps": 235, "total_steps": 321, "loss": 0.1597, "accuracy": 0.9437500238418579, "learning_rate": 1.77104016816768e-07, "epoch": 2.196261682242991, "percentage": 73.21, "elapsed_time": "2:26:21", "remaining_time": "0:53:33"}
{"current_steps": 240, "total_steps": 321, "loss": 0.1459, "accuracy": 0.9437500238418579, "learning_rate": 1.5824225079378684e-07, "epoch": 2.2429906542056073, "percentage": 74.77, "elapsed_time": "2:29:11", "remaining_time": "0:50:21"}
{"current_steps": 245, "total_steps": 321, "loss": 0.1576, "accuracy": 0.9750000238418579, "learning_rate": 1.4025214056067237e-07, "epoch": 2.289719626168224, "percentage": 76.32, "elapsed_time": "2:31:59", "remaining_time": "0:47:09"}
{"current_steps": 250, "total_steps": 321, "loss": 0.1519, "accuracy": 0.949999988079071, "learning_rate": 1.2317957003309725e-07, "epoch": 2.336448598130841, "percentage": 77.88, "elapsed_time": "2:34:47", "remaining_time": "0:43:57"}
{"current_steps": 250, "total_steps": 321, "eval_loss": 0.5571395754814148, "epoch": 2.336448598130841, "percentage": 77.88, "elapsed_time": "2:38:10", "remaining_time": "0:44:55"}
{"current_steps": 255, "total_steps": 321, "loss": 0.151, "accuracy": 0.9312499761581421, "learning_rate": 1.0706808293459873e-07, "epoch": 2.383177570093458, "percentage": 79.44, "elapsed_time": "2:40:59", "remaining_time": "0:41:40"}
{"current_steps": 260, "total_steps": 321, "loss": 0.1551, "accuracy": 0.9312499761581421, "learning_rate": 9.195877173797534e-08, "epoch": 2.4299065420560746, "percentage": 81.0, "elapsed_time": "2:43:48", "remaining_time": "0:38:25"}
{"current_steps": 265, "total_steps": 321, "loss": 0.1665, "accuracy": 0.918749988079071, "learning_rate": 7.789017285861438e-08, "epoch": 2.4766355140186915, "percentage": 82.55, "elapsed_time": "2:46:37", "remaining_time": "0:35:12"}
{"current_steps": 270, "total_steps": 321, "loss": 0.1421, "accuracy": 0.925000011920929, "learning_rate": 6.489816836706785e-08, "epoch": 2.5233644859813085, "percentage": 84.11, "elapsed_time": "2:49:25", "remaining_time": "0:32:00"}
{"current_steps": 275, "total_steps": 321, "loss": 0.149, "accuracy": 0.9312499761581421, "learning_rate": 5.3015894471550914e-08, "epoch": 2.5700934579439254, "percentage": 85.67, "elapsed_time": "2:52:12", "remaining_time": "0:28:48"}
{"current_steps": 280, "total_steps": 321, "loss": 0.1517, "accuracy": 0.9624999761581421, "learning_rate": 4.227365700378799e-08, "epoch": 2.616822429906542, "percentage": 87.23, "elapsed_time": "2:55:01", "remaining_time": "0:25:37"}
{"current_steps": 285, "total_steps": 321, "loss": 0.152, "accuracy": 0.949999988079071, "learning_rate": 3.269885412375223e-08, "epoch": 2.663551401869159, "percentage": 88.79, "elapsed_time": "2:57:50", "remaining_time": "0:22:27"}
{"current_steps": 290, "total_steps": 321, "loss": 0.1637, "accuracy": 0.925000011920929, "learning_rate": 2.4315906440446952e-08, "epoch": 2.710280373831776, "percentage": 90.34, "elapsed_time": "3:00:37", "remaining_time": "0:19:18"}
{"current_steps": 295, "total_steps": 321, "loss": 0.156, "accuracy": 0.918749988079071, "learning_rate": 1.7146194726952778e-08, "epoch": 2.7570093457943923, "percentage": 91.9, "elapsed_time": "3:03:24", "remaining_time": "0:16:09"}
{"current_steps": 300, "total_steps": 321, "loss": 0.1708, "accuracy": 0.956250011920929, "learning_rate": 1.1208005388599951e-08, "epoch": 2.803738317757009, "percentage": 93.46, "elapsed_time": "3:06:12", "remaining_time": "0:13:02"}
{"current_steps": 300, "total_steps": 321, "eval_loss": 0.5570527911186218, "epoch": 2.803738317757009, "percentage": 93.46, "elapsed_time": "3:09:34", "remaining_time": "0:13:16"}
{"current_steps": 305, "total_steps": 321, "loss": 0.1618, "accuracy": 0.956250011920929, "learning_rate": 6.516483823349794e-09, "epoch": 2.850467289719626, "percentage": 95.02, "elapsed_time": "3:12:52", "remaining_time": "0:10:07"}
{"current_steps": 310, "total_steps": 321, "loss": 0.1631, "accuracy": 0.96875, "learning_rate": 3.0835957933397773e-09, "epoch": 2.897196261682243, "percentage": 96.57, "elapsed_time": "3:15:40", "remaining_time": "0:06:56"}
{"current_steps": 315, "total_steps": 321, "loss": 0.1657, "accuracy": 0.949999988079071, "learning_rate": 9.180969061143851e-10, "epoch": 2.94392523364486, "percentage": 98.13, "elapsed_time": "3:18:28", "remaining_time": "0:03:46"}
{"current_steps": 320, "total_steps": 321, "loss": 0.1488, "accuracy": 0.9624999761581421, "learning_rate": 2.5510283379992504e-11, "epoch": 2.9906542056074765, "percentage": 99.69, "elapsed_time": "3:21:17", "remaining_time": "0:00:37"}
{"current_steps": 321, "total_steps": 321, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "3:22:20", "remaining_time": "0:00:00"}