File size: 11,650 Bytes
63e083c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
{"current_steps": 5, "total_steps": 261, "loss": 1.2695, "learning_rate": 5e-07, "epoch": 0.05730659025787966, "percentage": 1.92, "elapsed_time": "0:01:07", "remaining_time": "0:57:37"}
{"current_steps": 10, "total_steps": 261, "loss": 1.1722, "learning_rate": 1e-06, "epoch": 0.11461318051575932, "percentage": 3.83, "elapsed_time": "0:02:10", "remaining_time": "0:54:25"}
{"current_steps": 15, "total_steps": 261, "loss": 1.067, "learning_rate": 9.990212076323586e-07, "epoch": 0.17191977077363896, "percentage": 5.75, "elapsed_time": "0:03:12", "remaining_time": "0:52:34"}
{"current_steps": 20, "total_steps": 261, "loss": 1.0137, "learning_rate": 9.9608866266743e-07, "epoch": 0.22922636103151864, "percentage": 7.66, "elapsed_time": "0:04:14", "remaining_time": "0:51:11"}
{"current_steps": 25, "total_steps": 261, "loss": 1.0128, "learning_rate": 9.912138465157323e-07, "epoch": 0.28653295128939826, "percentage": 9.58, "elapsed_time": "0:05:17", "remaining_time": "0:49:56"}
{"current_steps": 30, "total_steps": 261, "loss": 0.9835, "learning_rate": 9.84415844908637e-07, "epoch": 0.3438395415472779, "percentage": 11.49, "elapsed_time": "0:06:19", "remaining_time": "0:48:44"}
{"current_steps": 35, "total_steps": 261, "loss": 0.967, "learning_rate": 9.757212731744973e-07, "epoch": 0.40114613180515757, "percentage": 13.41, "elapsed_time": "0:07:22", "remaining_time": "0:47:35"}
{"current_steps": 40, "total_steps": 261, "loss": 0.9694, "learning_rate": 9.65164172035126e-07, "epoch": 0.4584527220630373, "percentage": 15.33, "elapsed_time": "0:08:24", "remaining_time": "0:46:27"}
{"current_steps": 45, "total_steps": 261, "loss": 0.9532, "learning_rate": 9.527858743306018e-07, "epoch": 0.5157593123209169, "percentage": 17.24, "elapsed_time": "0:09:26", "remaining_time": "0:45:21"}
{"current_steps": 50, "total_steps": 261, "loss": 0.9472, "learning_rate": 9.386348431941952e-07, "epoch": 0.5730659025787965, "percentage": 19.16, "elapsed_time": "0:10:29", "remaining_time": "0:44:15"}
{"current_steps": 50, "total_steps": 261, "eval_loss": 0.9284669160842896, "epoch": 0.5730659025787965, "percentage": 19.16, "elapsed_time": "0:11:12", "remaining_time": "0:47:16"}
{"current_steps": 55, "total_steps": 261, "loss": 0.9391, "learning_rate": 9.227664823109882e-07, "epoch": 0.6303724928366762, "percentage": 21.07, "elapsed_time": "0:12:14", "remaining_time": "0:45:49"}
{"current_steps": 60, "total_steps": 261, "loss": 0.9422, "learning_rate": 9.052429190030588e-07, "epoch": 0.6876790830945558, "percentage": 22.99, "elapsed_time": "0:13:16", "remaining_time": "0:44:27"}
{"current_steps": 65, "total_steps": 261, "loss": 0.9428, "learning_rate": 8.861327609904857e-07, "epoch": 0.7449856733524355, "percentage": 24.9, "elapsed_time": "0:14:18", "remaining_time": "0:43:08"}
{"current_steps": 70, "total_steps": 261, "loss": 0.9253, "learning_rate": 8.655108277804975e-07, "epoch": 0.8022922636103151, "percentage": 26.82, "elapsed_time": "0:15:20", "remaining_time": "0:41:51"}
{"current_steps": 75, "total_steps": 261, "loss": 0.9285, "learning_rate": 8.434578577364217e-07, "epoch": 0.8595988538681948, "percentage": 28.74, "elapsed_time": "0:16:22", "remaining_time": "0:40:36"}
{"current_steps": 80, "total_steps": 261, "loss": 0.8996, "learning_rate": 8.200601919733105e-07, "epoch": 0.9169054441260746, "percentage": 30.65, "elapsed_time": "0:17:24", "remaining_time": "0:39:23"}
{"current_steps": 85, "total_steps": 261, "loss": 0.895, "learning_rate": 7.954094363178421e-07, "epoch": 0.9742120343839542, "percentage": 32.57, "elapsed_time": "0:18:26", "remaining_time": "0:38:11"}
{"current_steps": 90, "total_steps": 261, "loss": 0.8505, "learning_rate": 7.696021026559849e-07, "epoch": 1.0315186246418337, "percentage": 34.48, "elapsed_time": "0:19:28", "remaining_time": "0:37:00"}
{"current_steps": 95, "total_steps": 261, "loss": 0.7964, "learning_rate": 7.427392310726087e-07, "epoch": 1.0888252148997135, "percentage": 36.4, "elapsed_time": "0:20:30", "remaining_time": "0:35:50"}
{"current_steps": 100, "total_steps": 261, "loss": 0.7918, "learning_rate": 7.149259942624286e-07, "epoch": 1.146131805157593, "percentage": 38.31, "elapsed_time": "0:21:32", "remaining_time": "0:34:40"}
{"current_steps": 100, "total_steps": 261, "eval_loss": 0.8878653049468994, "epoch": 1.146131805157593, "percentage": 38.31, "elapsed_time": "0:22:14", "remaining_time": "0:35:49"}
{"current_steps": 105, "total_steps": 261, "loss": 0.7851, "learning_rate": 6.862712857610811e-07, "epoch": 1.2034383954154728, "percentage": 40.23, "elapsed_time": "0:23:49", "remaining_time": "0:35:23"}
{"current_steps": 110, "total_steps": 261, "loss": 0.7941, "learning_rate": 6.568872936084788e-07, "epoch": 1.2607449856733524, "percentage": 42.15, "elapsed_time": "0:24:51", "remaining_time": "0:34:06"}
{"current_steps": 115, "total_steps": 261, "loss": 0.7818, "learning_rate": 6.26889061113621e-07, "epoch": 1.3180515759312321, "percentage": 44.06, "elapsed_time": "0:25:53", "remaining_time": "0:32:51"}
{"current_steps": 120, "total_steps": 261, "loss": 0.7888, "learning_rate": 5.963940364405425e-07, "epoch": 1.3753581661891117, "percentage": 45.98, "elapsed_time": "0:26:55", "remaining_time": "0:31:38"}
{"current_steps": 125, "total_steps": 261, "loss": 0.7783, "learning_rate": 5.655216127788472e-07, "epoch": 1.4326647564469914, "percentage": 47.89, "elapsed_time": "0:27:57", "remaining_time": "0:30:25"}
{"current_steps": 130, "total_steps": 261, "loss": 0.7718, "learning_rate": 5.343926608991379e-07, "epoch": 1.4899713467048712, "percentage": 49.81, "elapsed_time": "0:28:59", "remaining_time": "0:29:12"}
{"current_steps": 135, "total_steps": 261, "loss": 0.7789, "learning_rate": 5.031290559234649e-07, "epoch": 1.5472779369627507, "percentage": 51.72, "elapsed_time": "0:30:01", "remaining_time": "0:28:01"}
{"current_steps": 140, "total_steps": 261, "loss": 0.7749, "learning_rate": 4.718532001635686e-07, "epoch": 1.6045845272206303, "percentage": 53.64, "elapsed_time": "0:31:03", "remaining_time": "0:26:50"}
{"current_steps": 145, "total_steps": 261, "loss": 0.7639, "learning_rate": 4.406875438950861e-07, "epoch": 1.66189111747851, "percentage": 55.56, "elapsed_time": "0:32:04", "remaining_time": "0:25:39"}
{"current_steps": 150, "total_steps": 261, "loss": 0.7632, "learning_rate": 4.097541059439698e-07, "epoch": 1.7191977077363898, "percentage": 57.47, "elapsed_time": "0:33:06", "remaining_time": "0:24:30"}
{"current_steps": 150, "total_steps": 261, "eval_loss": 0.8642120361328125, "epoch": 1.7191977077363898, "percentage": 57.47, "elapsed_time": "0:33:49", "remaining_time": "0:25:01"}
{"current_steps": 155, "total_steps": 261, "loss": 0.7686, "learning_rate": 3.7917399596210535e-07, "epoch": 1.7765042979942693, "percentage": 59.39, "elapsed_time": "0:34:51", "remaining_time": "0:23:50"}
{"current_steps": 160, "total_steps": 261, "loss": 0.7652, "learning_rate": 3.490669402625007e-07, "epoch": 1.8338108882521489, "percentage": 61.3, "elapsed_time": "0:35:53", "remaining_time": "0:22:39"}
{"current_steps": 165, "total_steps": 261, "loss": 0.7608, "learning_rate": 3.195508130704795e-07, "epoch": 1.8911174785100286, "percentage": 63.22, "elapsed_time": "0:36:55", "remaining_time": "0:21:28"}
{"current_steps": 170, "total_steps": 261, "loss": 0.7559, "learning_rate": 2.9074117502611296e-07, "epoch": 1.9484240687679084, "percentage": 65.13, "elapsed_time": "0:37:57", "remaining_time": "0:20:18"}
{"current_steps": 175, "total_steps": 261, "loss": 0.7395, "learning_rate": 2.6275082074473075e-07, "epoch": 2.005730659025788, "percentage": 67.05, "elapsed_time": "0:38:59", "remaining_time": "0:19:09"}
{"current_steps": 180, "total_steps": 261, "loss": 0.6774, "learning_rate": 2.3568933720688543e-07, "epoch": 2.0630372492836675, "percentage": 68.97, "elapsed_time": "0:40:01", "remaining_time": "0:18:00"}
{"current_steps": 185, "total_steps": 261, "loss": 0.6677, "learning_rate": 2.096626747067527e-07, "epoch": 2.1203438395415475, "percentage": 70.88, "elapsed_time": "0:41:03", "remaining_time": "0:16:51"}
{"current_steps": 190, "total_steps": 261, "loss": 0.6876, "learning_rate": 1.8477273203877398e-07, "epoch": 2.177650429799427, "percentage": 72.8, "elapsed_time": "0:42:05", "remaining_time": "0:15:43"}
{"current_steps": 195, "total_steps": 261, "loss": 0.6838, "learning_rate": 1.6111695754660664e-07, "epoch": 2.2349570200573066, "percentage": 74.71, "elapsed_time": "0:43:07", "remaining_time": "0:14:35"}
{"current_steps": 200, "total_steps": 261, "loss": 0.6847, "learning_rate": 1.3878796759634542e-07, "epoch": 2.292263610315186, "percentage": 76.63, "elapsed_time": "0:44:09", "remaining_time": "0:13:27"}
{"current_steps": 200, "total_steps": 261, "eval_loss": 0.8614758253097534, "epoch": 2.292263610315186, "percentage": 76.63, "elapsed_time": "0:44:51", "remaining_time": "0:13:40"}
{"current_steps": 205, "total_steps": 261, "loss": 0.6856, "learning_rate": 1.1787318396775186e-07, "epoch": 2.349570200573066, "percentage": 78.54, "elapsed_time": "0:46:28", "remaining_time": "0:12:41"}
{"current_steps": 210, "total_steps": 261, "loss": 0.6915, "learning_rate": 9.845449158317215e-08, "epoch": 2.4068767908309456, "percentage": 80.46, "elapsed_time": "0:47:30", "remaining_time": "0:11:32"}
{"current_steps": 215, "total_steps": 261, "loss": 0.6697, "learning_rate": 8.060791791418886e-08, "epoch": 2.464183381088825, "percentage": 82.38, "elapsed_time": "0:48:32", "remaining_time": "0:10:23"}
{"current_steps": 220, "total_steps": 261, "loss": 0.6839, "learning_rate": 6.440333532118503e-08, "epoch": 2.5214899713467047, "percentage": 84.29, "elapsed_time": "0:49:34", "remaining_time": "0:09:14"}
{"current_steps": 225, "total_steps": 261, "loss": 0.6739, "learning_rate": 4.990418749121178e-08, "epoch": 2.5787965616045847, "percentage": 86.21, "elapsed_time": "0:50:36", "remaining_time": "0:08:05"}
{"current_steps": 230, "total_steps": 261, "loss": 0.6754, "learning_rate": 3.716724104520247e-08, "epoch": 2.6361031518624642, "percentage": 88.12, "elapsed_time": "0:51:38", "remaining_time": "0:06:57"}
{"current_steps": 235, "total_steps": 261, "loss": 0.6954, "learning_rate": 2.624236328703061e-08, "epoch": 2.693409742120344, "percentage": 90.04, "elapsed_time": "0:52:40", "remaining_time": "0:05:49"}
{"current_steps": 240, "total_steps": 261, "loss": 0.6716, "learning_rate": 1.7172326964564775e-08, "epoch": 2.7507163323782233, "percentage": 91.95, "elapsed_time": "0:53:42", "remaining_time": "0:04:41"}
{"current_steps": 245, "total_steps": 261, "loss": 0.6893, "learning_rate": 9.992642807111484e-09, "epoch": 2.8080229226361033, "percentage": 93.87, "elapsed_time": "0:54:44", "remaining_time": "0:03:34"}
{"current_steps": 250, "total_steps": 261, "loss": 0.685, "learning_rate": 4.7314204948923354e-09, "epoch": 2.865329512893983, "percentage": 95.79, "elapsed_time": "0:55:46", "remaining_time": "0:02:27"}
{"current_steps": 250, "total_steps": 261, "eval_loss": 0.8606014847755432, "epoch": 2.865329512893983, "percentage": 95.79, "elapsed_time": "0:56:29", "remaining_time": "0:02:29"}
{"current_steps": 255, "total_steps": 261, "loss": 0.6778, "learning_rate": 1.4092586048820575e-09, "epoch": 2.9226361031518624, "percentage": 97.7, "elapsed_time": "0:57:31", "remaining_time": "0:01:21"}
{"current_steps": 260, "total_steps": 261, "loss": 0.6874, "learning_rate": 3.91639638886998e-11, "epoch": 2.9799426934097424, "percentage": 99.62, "elapsed_time": "0:58:33", "remaining_time": "0:00:13"}
{"current_steps": 261, "total_steps": 261, "epoch": 2.9914040114613183, "percentage": 100.0, "elapsed_time": "0:59:21", "remaining_time": "0:00:00"}
|