{"current_steps": 5, "total_steps": 1155, "loss": 1.6823, "learning_rate": 5e-07, "epoch": 0.012961762799740765, "percentage": 0.43, "elapsed_time": "0:01:09", "remaining_time": "4:27:03"} {"current_steps": 10, "total_steps": 1155, "loss": 1.566, "learning_rate": 1e-06, "epoch": 0.02592352559948153, "percentage": 0.87, "elapsed_time": "0:02:14", "remaining_time": "4:17:03"} {"current_steps": 15, "total_steps": 1155, "loss": 1.2721, "learning_rate": 9.99952949745378e-07, "epoch": 0.03888528839922229, "percentage": 1.3, "elapsed_time": "0:03:20", "remaining_time": "4:13:20"} {"current_steps": 20, "total_steps": 1155, "loss": 1.1461, "learning_rate": 9.998118078364185e-07, "epoch": 0.05184705119896306, "percentage": 1.73, "elapsed_time": "0:04:25", "remaining_time": "4:11:05"} {"current_steps": 25, "total_steps": 1155, "loss": 1.0509, "learning_rate": 9.995766008361718e-07, "epoch": 0.06480881399870382, "percentage": 2.16, "elapsed_time": "0:05:31", "remaining_time": "4:09:26"} {"current_steps": 30, "total_steps": 1155, "loss": 0.9982, "learning_rate": 9.992473730108354e-07, "epoch": 0.07777057679844458, "percentage": 2.6, "elapsed_time": "0:06:36", "remaining_time": "4:08:05"} {"current_steps": 35, "total_steps": 1155, "loss": 0.9804, "learning_rate": 9.98824186321421e-07, "epoch": 0.09073233959818536, "percentage": 3.03, "elapsed_time": "0:07:42", "remaining_time": "4:06:30"} {"current_steps": 40, "total_steps": 1155, "loss": 0.954, "learning_rate": 9.98307120412095e-07, "epoch": 0.10369410239792612, "percentage": 3.46, "elapsed_time": "0:08:47", "remaining_time": "4:05:11"} {"current_steps": 45, "total_steps": 1155, "loss": 0.928, "learning_rate": 9.976962725951878e-07, "epoch": 0.11665586519766688, "percentage": 3.9, "elapsed_time": "0:09:53", "remaining_time": "4:04:01"} {"current_steps": 50, "total_steps": 1155, "loss": 0.9184, "learning_rate": 9.969917578328807e-07, "epoch": 0.12961762799740764, "percentage": 4.33, "elapsed_time": "0:10:58", "remaining_time": "4:02:32"} {"current_steps": 50, "total_steps": 1155, "eval_loss": 0.92087721824646, "epoch": 0.12961762799740764, "percentage": 4.33, "elapsed_time": "0:14:09", "remaining_time": "5:12:44"} {"current_steps": 55, "total_steps": 1155, "loss": 0.9194, "learning_rate": 9.961937087155695e-07, "epoch": 0.1425793907971484, "percentage": 4.76, "elapsed_time": "0:15:13", "remaining_time": "5:04:35"} {"current_steps": 60, "total_steps": 1155, "loss": 0.8832, "learning_rate": 9.953022754369114e-07, "epoch": 0.15554115359688916, "percentage": 5.19, "elapsed_time": "0:16:20", "remaining_time": "4:58:07"} {"current_steps": 65, "total_steps": 1155, "loss": 0.8923, "learning_rate": 9.943176257655565e-07, "epoch": 0.16850291639662995, "percentage": 5.63, "elapsed_time": "0:17:26", "remaining_time": "4:52:26"} {"current_steps": 70, "total_steps": 1155, "loss": 0.8883, "learning_rate": 9.932399450135765e-07, "epoch": 0.18146467919637072, "percentage": 6.06, "elapsed_time": "0:18:31", "remaining_time": "4:47:05"} {"current_steps": 75, "total_steps": 1155, "loss": 0.8639, "learning_rate": 9.920694360015862e-07, "epoch": 0.19442644199611148, "percentage": 6.49, "elapsed_time": "0:19:36", "remaining_time": "4:42:24"} {"current_steps": 80, "total_steps": 1155, "loss": 0.8732, "learning_rate": 9.908063190205739e-07, "epoch": 0.20738820479585224, "percentage": 6.93, "elapsed_time": "0:20:42", "remaining_time": "4:38:09"} {"current_steps": 85, "total_steps": 1155, "loss": 0.8883, "learning_rate": 9.894508317904417e-07, "epoch": 0.220349967595593, "percentage": 7.36, "elapsed_time": "0:21:47", "remaining_time": "4:34:23"} {"current_steps": 90, "total_steps": 1155, "loss": 0.8671, "learning_rate": 9.88003229415267e-07, "epoch": 0.23331173039533376, "percentage": 7.79, "elapsed_time": "0:22:53", "remaining_time": "4:30:52"} {"current_steps": 95, "total_steps": 1155, "loss": 0.8771, "learning_rate": 9.864637843352913e-07, "epoch": 0.24627349319507452, "percentage": 8.23, "elapsed_time": "0:23:59", "remaining_time": "4:27:37"} {"current_steps": 100, "total_steps": 1155, "loss": 0.8611, "learning_rate": 9.848327862756466e-07, "epoch": 0.2592352559948153, "percentage": 8.66, "elapsed_time": "0:25:04", "remaining_time": "4:24:31"} {"current_steps": 100, "total_steps": 1155, "eval_loss": 0.8652921915054321, "epoch": 0.2592352559948153, "percentage": 8.66, "elapsed_time": "0:28:14", "remaining_time": "4:57:59"} {"current_steps": 105, "total_steps": 1155, "loss": 0.8547, "learning_rate": 9.831105421918285e-07, "epoch": 0.27219701879455604, "percentage": 9.09, "elapsed_time": "0:29:50", "remaining_time": "4:58:25"} {"current_steps": 110, "total_steps": 1155, "loss": 0.8369, "learning_rate": 9.81297376211928e-07, "epoch": 0.2851587815942968, "percentage": 9.52, "elapsed_time": "0:30:55", "remaining_time": "4:53:47"} {"current_steps": 115, "total_steps": 1155, "loss": 0.8403, "learning_rate": 9.79393629575629e-07, "epoch": 0.29812054439403757, "percentage": 9.96, "elapsed_time": "0:32:00", "remaining_time": "4:49:24"} {"current_steps": 120, "total_steps": 1155, "loss": 0.8437, "learning_rate": 9.773996605699875e-07, "epoch": 0.31108230719377833, "percentage": 10.39, "elapsed_time": "0:33:05", "remaining_time": "4:45:27"} {"current_steps": 125, "total_steps": 1155, "loss": 0.8295, "learning_rate": 9.753158444620013e-07, "epoch": 0.32404406999351915, "percentage": 10.82, "elapsed_time": "0:34:10", "remaining_time": "4:41:39"} {"current_steps": 130, "total_steps": 1155, "loss": 0.8416, "learning_rate": 9.73142573427984e-07, "epoch": 0.3370058327932599, "percentage": 11.26, "elapsed_time": "0:35:16", "remaining_time": "4:38:09"} {"current_steps": 135, "total_steps": 1155, "loss": 0.8372, "learning_rate": 9.708802564797578e-07, "epoch": 0.34996759559300067, "percentage": 11.69, "elapsed_time": "0:36:22", "remaining_time": "4:34:46"} {"current_steps": 140, "total_steps": 1155, "loss": 0.8407, "learning_rate": 9.685293193876765e-07, "epoch": 0.36292935839274143, "percentage": 12.12, "elapsed_time": "0:37:27", "remaining_time": "4:31:34"} {"current_steps": 145, "total_steps": 1155, "loss": 0.8218, "learning_rate": 9.660902046004953e-07, "epoch": 0.3758911211924822, "percentage": 12.55, "elapsed_time": "0:38:33", "remaining_time": "4:28:31"} {"current_steps": 150, "total_steps": 1155, "loss": 0.8257, "learning_rate": 9.635633711621011e-07, "epoch": 0.38885288399222295, "percentage": 12.99, "elapsed_time": "0:39:37", "remaining_time": "4:25:25"} {"current_steps": 150, "total_steps": 1155, "eval_loss": 0.8396357893943787, "epoch": 0.38885288399222295, "percentage": 12.99, "elapsed_time": "0:42:47", "remaining_time": "4:46:40"} {"current_steps": 155, "total_steps": 1155, "loss": 0.8335, "learning_rate": 9.609492946251208e-07, "epoch": 0.4018146467919637, "percentage": 13.42, "elapsed_time": "0:43:52", "remaining_time": "4:43:06"} {"current_steps": 160, "total_steps": 1155, "loss": 0.8274, "learning_rate": 9.58248466961421e-07, "epoch": 0.4147764095917045, "percentage": 13.85, "elapsed_time": "0:44:58", "remaining_time": "4:39:41"} {"current_steps": 165, "total_steps": 1155, "loss": 0.8419, "learning_rate": 9.554613964695188e-07, "epoch": 0.42773817239144524, "percentage": 14.29, "elapsed_time": "0:46:03", "remaining_time": "4:36:19"} {"current_steps": 170, "total_steps": 1155, "loss": 0.8264, "learning_rate": 9.525886076789193e-07, "epoch": 0.440699935191186, "percentage": 14.72, "elapsed_time": "0:47:08", "remaining_time": "4:33:08"} {"current_steps": 175, "total_steps": 1155, "loss": 0.813, "learning_rate": 9.496306412513988e-07, "epoch": 0.45366169799092676, "percentage": 15.15, "elapsed_time": "0:48:13", "remaining_time": "4:30:04"} {"current_steps": 180, "total_steps": 1155, "loss": 0.8209, "learning_rate": 9.465880538792517e-07, "epoch": 0.4666234607906675, "percentage": 15.58, "elapsed_time": "0:49:19", "remaining_time": "4:27:09"} {"current_steps": 185, "total_steps": 1155, "loss": 0.8246, "learning_rate": 9.434614181805202e-07, "epoch": 0.4795852235904083, "percentage": 16.02, "elapsed_time": "0:50:24", "remaining_time": "4:24:19"} {"current_steps": 190, "total_steps": 1155, "loss": 0.8236, "learning_rate": 9.402513225912271e-07, "epoch": 0.49254698639014904, "percentage": 16.45, "elapsed_time": "0:51:30", "remaining_time": "4:21:35"} {"current_steps": 195, "total_steps": 1155, "loss": 0.8158, "learning_rate": 9.36958371254632e-07, "epoch": 0.5055087491898899, "percentage": 16.88, "elapsed_time": "0:52:35", "remaining_time": "4:18:55"} {"current_steps": 200, "total_steps": 1155, "loss": 0.8308, "learning_rate": 9.335831839075302e-07, "epoch": 0.5184705119896306, "percentage": 17.32, "elapsed_time": "0:53:40", "remaining_time": "4:16:18"} {"current_steps": 200, "total_steps": 1155, "eval_loss": 0.8231202960014343, "epoch": 0.5184705119896306, "percentage": 17.32, "elapsed_time": "0:56:51", "remaining_time": "4:31:27"} {"current_steps": 205, "total_steps": 1155, "loss": 0.8191, "learning_rate": 9.301263957636179e-07, "epoch": 0.5314322747893714, "percentage": 17.75, "elapsed_time": "0:58:27", "remaining_time": "4:30:52"} {"current_steps": 210, "total_steps": 1155, "loss": 0.8191, "learning_rate": 9.265886573939446e-07, "epoch": 0.5443940375891121, "percentage": 18.18, "elapsed_time": "0:59:32", "remaining_time": "4:27:56"} {"current_steps": 215, "total_steps": 1155, "loss": 0.8255, "learning_rate": 9.229706346044747e-07, "epoch": 0.5573558003888529, "percentage": 18.61, "elapsed_time": "1:00:37", "remaining_time": "4:25:05"} {"current_steps": 220, "total_steps": 1155, "loss": 0.8164, "learning_rate": 9.192730083107818e-07, "epoch": 0.5703175631885936, "percentage": 19.05, "elapsed_time": "1:01:43", "remaining_time": "4:22:18"} {"current_steps": 225, "total_steps": 1155, "loss": 0.7939, "learning_rate": 9.154964744099005e-07, "epoch": 0.5832793259883344, "percentage": 19.48, "elapsed_time": "1:02:48", "remaining_time": "4:19:35"} {"current_steps": 230, "total_steps": 1155, "loss": 0.8034, "learning_rate": 9.116417436493573e-07, "epoch": 0.5962410887880751, "percentage": 19.91, "elapsed_time": "1:03:54", "remaining_time": "4:17:00"} {"current_steps": 235, "total_steps": 1155, "loss": 0.8063, "learning_rate": 9.077095414934075e-07, "epoch": 0.609202851587816, "percentage": 20.35, "elapsed_time": "1:05:00", "remaining_time": "4:14:28"} {"current_steps": 240, "total_steps": 1155, "loss": 0.8233, "learning_rate": 9.037006079865015e-07, "epoch": 0.6221646143875567, "percentage": 20.78, "elapsed_time": "1:06:05", "remaining_time": "4:11:59"} {"current_steps": 245, "total_steps": 1155, "loss": 0.8283, "learning_rate": 8.996156976140086e-07, "epoch": 0.6351263771872975, "percentage": 21.21, "elapsed_time": "1:07:10", "remaining_time": "4:09:30"} {"current_steps": 250, "total_steps": 1155, "loss": 0.8168, "learning_rate": 8.95455579160221e-07, "epoch": 0.6480881399870383, "percentage": 21.65, "elapsed_time": "1:08:16", "remaining_time": "4:07:08"} {"current_steps": 250, "total_steps": 1155, "eval_loss": 0.810850977897644, "epoch": 0.6480881399870383, "percentage": 21.65, "elapsed_time": "1:11:26", "remaining_time": "4:18:36"} {"current_steps": 255, "total_steps": 1155, "loss": 0.7922, "learning_rate": 8.912210355636689e-07, "epoch": 0.661049902786779, "percentage": 22.08, "elapsed_time": "1:12:31", "remaining_time": "4:15:57"} {"current_steps": 260, "total_steps": 1155, "loss": 0.8044, "learning_rate": 8.8691286376977e-07, "epoch": 0.6740116655865198, "percentage": 22.51, "elapsed_time": "1:13:36", "remaining_time": "4:13:24"} {"current_steps": 265, "total_steps": 1155, "loss": 0.7933, "learning_rate": 8.825318745808439e-07, "epoch": 0.6869734283862605, "percentage": 22.94, "elapsed_time": "1:14:42", "remaining_time": "4:10:54"} {"current_steps": 270, "total_steps": 1155, "loss": 0.8018, "learning_rate": 8.780788925035177e-07, "epoch": 0.6999351911860013, "percentage": 23.38, "elapsed_time": "1:15:47", "remaining_time": "4:08:26"} {"current_steps": 275, "total_steps": 1155, "loss": 0.7961, "learning_rate": 8.735547555935537e-07, "epoch": 0.712896953985742, "percentage": 23.81, "elapsed_time": "1:16:53", "remaining_time": "4:06:02"} {"current_steps": 280, "total_steps": 1155, "loss": 0.812, "learning_rate": 8.689603152981262e-07, "epoch": 0.7258587167854829, "percentage": 24.24, "elapsed_time": "1:17:59", "remaining_time": "4:03:43"} {"current_steps": 285, "total_steps": 1155, "loss": 0.7971, "learning_rate": 8.64296436295578e-07, "epoch": 0.7388204795852236, "percentage": 24.68, "elapsed_time": "1:19:03", "remaining_time": "4:01:21"} {"current_steps": 290, "total_steps": 1155, "loss": 0.8067, "learning_rate": 8.595639963326879e-07, "epoch": 0.7517822423849644, "percentage": 25.11, "elapsed_time": "1:20:09", "remaining_time": "3:59:04"} {"current_steps": 295, "total_steps": 1155, "loss": 0.8155, "learning_rate": 8.547638860594764e-07, "epoch": 0.7647440051847051, "percentage": 25.54, "elapsed_time": "1:21:14", "remaining_time": "3:56:51"} {"current_steps": 300, "total_steps": 1155, "loss": 0.8021, "learning_rate": 8.49897008861586e-07, "epoch": 0.7777057679844459, "percentage": 25.97, "elapsed_time": "1:22:20", "remaining_time": "3:54:41"} {"current_steps": 300, "total_steps": 1155, "eval_loss": 0.800530195236206, "epoch": 0.7777057679844459, "percentage": 25.97, "elapsed_time": "1:25:31", "remaining_time": "4:03:44"} {"current_steps": 305, "total_steps": 1155, "loss": 0.7993, "learning_rate": 8.449642806902622e-07, "epoch": 0.7906675307841866, "percentage": 26.41, "elapsed_time": "1:27:08", "remaining_time": "4:02:51"} {"current_steps": 310, "total_steps": 1155, "loss": 0.7918, "learning_rate": 8.399666298899706e-07, "epoch": 0.8036292935839274, "percentage": 26.84, "elapsed_time": "1:28:14", "remaining_time": "4:00:31"} {"current_steps": 315, "total_steps": 1155, "loss": 0.7943, "learning_rate": 8.34904997023682e-07, "epoch": 0.8165910563836681, "percentage": 27.27, "elapsed_time": "1:29:20", "remaining_time": "3:58:14"} {"current_steps": 320, "total_steps": 1155, "loss": 0.783, "learning_rate": 8.297803346958569e-07, "epoch": 0.829552819183409, "percentage": 27.71, "elapsed_time": "1:30:25", "remaining_time": "3:55:57"} {"current_steps": 325, "total_steps": 1155, "loss": 0.7976, "learning_rate": 8.245936073731651e-07, "epoch": 0.8425145819831497, "percentage": 28.14, "elapsed_time": "1:31:29", "remaining_time": "3:53:40"} {"current_steps": 330, "total_steps": 1155, "loss": 0.7807, "learning_rate": 8.193457912029712e-07, "epoch": 0.8554763447828905, "percentage": 28.57, "elapsed_time": "1:32:36", "remaining_time": "3:51:30"} {"current_steps": 335, "total_steps": 1155, "loss": 0.7836, "learning_rate": 8.140378738296232e-07, "epoch": 0.8684381075826313, "percentage": 29.0, "elapsed_time": "1:33:41", "remaining_time": "3:49:20"} {"current_steps": 340, "total_steps": 1155, "loss": 0.8063, "learning_rate": 8.086708542085767e-07, "epoch": 0.881399870382372, "percentage": 29.44, "elapsed_time": "1:34:46", "remaining_time": "3:47:11"} {"current_steps": 345, "total_steps": 1155, "loss": 0.7911, "learning_rate": 8.032457424183909e-07, "epoch": 0.8943616331821128, "percentage": 29.87, "elapsed_time": "1:35:52", "remaining_time": "3:45:05"} {"current_steps": 350, "total_steps": 1155, "loss": 0.7741, "learning_rate": 7.977635594706298e-07, "epoch": 0.9073233959818535, "percentage": 30.3, "elapsed_time": "1:36:58", "remaining_time": "3:43:01"} {"current_steps": 350, "total_steps": 1155, "eval_loss": 0.7928882837295532, "epoch": 0.9073233959818535, "percentage": 30.3, "elapsed_time": "1:40:08", "remaining_time": "3:50:19"} {"current_steps": 355, "total_steps": 1155, "loss": 0.7932, "learning_rate": 7.922253371177082e-07, "epoch": 0.9202851587815943, "percentage": 30.74, "elapsed_time": "1:41:12", "remaining_time": "3:48:05"} {"current_steps": 360, "total_steps": 1155, "loss": 0.7871, "learning_rate": 7.866321176587128e-07, "epoch": 0.933246921581335, "percentage": 31.17, "elapsed_time": "1:42:18", "remaining_time": "3:45:56"} {"current_steps": 365, "total_steps": 1155, "loss": 0.7792, "learning_rate": 7.809849537432431e-07, "epoch": 0.9462086843810759, "percentage": 31.6, "elapsed_time": "1:43:24", "remaining_time": "3:43:48"} {"current_steps": 370, "total_steps": 1155, "loss": 0.788, "learning_rate": 7.752849081732991e-07, "epoch": 0.9591704471808166, "percentage": 32.03, "elapsed_time": "1:44:29", "remaining_time": "3:41:41"} {"current_steps": 375, "total_steps": 1155, "loss": 0.7614, "learning_rate": 7.695330537032627e-07, "epoch": 0.9721322099805574, "percentage": 32.47, "elapsed_time": "1:45:35", "remaining_time": "3:39:37"} {"current_steps": 380, "total_steps": 1155, "loss": 0.7964, "learning_rate": 7.637304728380037e-07, "epoch": 0.9850939727802981, "percentage": 32.9, "elapsed_time": "1:46:40", "remaining_time": "3:37:32"} {"current_steps": 385, "total_steps": 1155, "loss": 0.7659, "learning_rate": 7.5787825762915e-07, "epoch": 0.9980557355800389, "percentage": 33.33, "elapsed_time": "1:47:45", "remaining_time": "3:35:31"} {"current_steps": 390, "total_steps": 1155, "loss": 0.729, "learning_rate": 7.519775094695648e-07, "epoch": 1.0110174983797797, "percentage": 33.77, "elapsed_time": "1:48:50", "remaining_time": "3:33:29"} {"current_steps": 395, "total_steps": 1155, "loss": 0.7421, "learning_rate": 7.460293388860614e-07, "epoch": 1.0239792611795204, "percentage": 34.2, "elapsed_time": "1:49:55", "remaining_time": "3:31:30"} {"current_steps": 400, "total_steps": 1155, "loss": 0.7155, "learning_rate": 7.400348653304021e-07, "epoch": 1.0369410239792611, "percentage": 34.63, "elapsed_time": "1:51:00", "remaining_time": "3:29:31"} {"current_steps": 400, "total_steps": 1155, "eval_loss": 0.7879951596260071, "epoch": 1.0369410239792611, "percentage": 34.63, "elapsed_time": "1:54:11", "remaining_time": "3:35:31"} {"current_steps": 405, "total_steps": 1155, "loss": 0.721, "learning_rate": 7.33995216968615e-07, "epoch": 1.0499027867790018, "percentage": 35.06, "elapsed_time": "1:55:47", "remaining_time": "3:34:25"} {"current_steps": 410, "total_steps": 1155, "loss": 0.7251, "learning_rate": 7.279115304686733e-07, "epoch": 1.0628645495787428, "percentage": 35.5, "elapsed_time": "1:56:53", "remaining_time": "3:32:24"} {"current_steps": 415, "total_steps": 1155, "loss": 0.7079, "learning_rate": 7.217849507865723e-07, "epoch": 1.0758263123784835, "percentage": 35.93, "elapsed_time": "1:57:59", "remaining_time": "3:30:23"} {"current_steps": 420, "total_steps": 1155, "loss": 0.716, "learning_rate": 7.156166309508481e-07, "epoch": 1.0887880751782242, "percentage": 36.36, "elapsed_time": "1:59:04", "remaining_time": "3:28:22"} {"current_steps": 425, "total_steps": 1155, "loss": 0.7248, "learning_rate": 7.094077318455761e-07, "epoch": 1.101749837977965, "percentage": 36.8, "elapsed_time": "2:00:09", "remaining_time": "3:26:23"} {"current_steps": 430, "total_steps": 1155, "loss": 0.7282, "learning_rate": 7.031594219918915e-07, "epoch": 1.1147116007777058, "percentage": 37.23, "elapsed_time": "2:01:14", "remaining_time": "3:24:24"} {"current_steps": 435, "total_steps": 1155, "loss": 0.7214, "learning_rate": 6.968728773280729e-07, "epoch": 1.1276733635774465, "percentage": 37.66, "elapsed_time": "2:02:19", "remaining_time": "3:22:28"} {"current_steps": 440, "total_steps": 1155, "loss": 0.7149, "learning_rate": 6.905492809882285e-07, "epoch": 1.1406351263771872, "percentage": 38.1, "elapsed_time": "2:03:25", "remaining_time": "3:20:33"} {"current_steps": 445, "total_steps": 1155, "loss": 0.7118, "learning_rate": 6.841898230796302e-07, "epoch": 1.1535968891769282, "percentage": 38.53, "elapsed_time": "2:04:29", "remaining_time": "3:18:38"} {"current_steps": 450, "total_steps": 1155, "loss": 0.7322, "learning_rate": 6.777957004587331e-07, "epoch": 1.1665586519766689, "percentage": 38.96, "elapsed_time": "2:05:35", "remaining_time": "3:16:45"} {"current_steps": 450, "total_steps": 1155, "eval_loss": 0.7836564779281616, "epoch": 1.1665586519766689, "percentage": 38.96, "elapsed_time": "2:08:46", "remaining_time": "3:21:44"} {"current_steps": 455, "total_steps": 1155, "loss": 0.731, "learning_rate": 6.713681165059271e-07, "epoch": 1.1795204147764096, "percentage": 39.39, "elapsed_time": "2:09:51", "remaining_time": "3:19:46"} {"current_steps": 460, "total_steps": 1155, "loss": 0.7263, "learning_rate": 6.649082808990585e-07, "epoch": 1.1924821775761503, "percentage": 39.83, "elapsed_time": "2:10:56", "remaining_time": "3:17:49"} {"current_steps": 465, "total_steps": 1155, "loss": 0.7138, "learning_rate": 6.584174093857675e-07, "epoch": 1.2054439403758912, "percentage": 40.26, "elapsed_time": "2:12:00", "remaining_time": "3:15:53"} {"current_steps": 470, "total_steps": 1155, "loss": 0.7131, "learning_rate": 6.518967235546841e-07, "epoch": 1.218405703175632, "percentage": 40.69, "elapsed_time": "2:13:07", "remaining_time": "3:14:00"} {"current_steps": 475, "total_steps": 1155, "loss": 0.7056, "learning_rate": 6.453474506055227e-07, "epoch": 1.2313674659753726, "percentage": 41.13, "elapsed_time": "2:14:12", "remaining_time": "3:12:07"} {"current_steps": 480, "total_steps": 1155, "loss": 0.7142, "learning_rate": 6.387708231181228e-07, "epoch": 1.2443292287751135, "percentage": 41.56, "elapsed_time": "2:15:17", "remaining_time": "3:10:15"} {"current_steps": 485, "total_steps": 1155, "loss": 0.7295, "learning_rate": 6.321680788204757e-07, "epoch": 1.2572909915748542, "percentage": 41.99, "elapsed_time": "2:16:22", "remaining_time": "3:08:24"} {"current_steps": 490, "total_steps": 1155, "loss": 0.6984, "learning_rate": 6.255404603557833e-07, "epoch": 1.270252754374595, "percentage": 42.42, "elapsed_time": "2:17:28", "remaining_time": "3:06:33"} {"current_steps": 495, "total_steps": 1155, "loss": 0.7286, "learning_rate": 6.188892150485902e-07, "epoch": 1.2832145171743357, "percentage": 42.86, "elapsed_time": "2:18:33", "remaining_time": "3:04:44"} {"current_steps": 500, "total_steps": 1155, "loss": 0.7214, "learning_rate": 6.122155946700381e-07, "epoch": 1.2961762799740764, "percentage": 43.29, "elapsed_time": "2:19:38", "remaining_time": "3:02:56"} {"current_steps": 500, "total_steps": 1155, "eval_loss": 0.7790202498435974, "epoch": 1.2961762799740764, "percentage": 43.29, "elapsed_time": "2:22:48", "remaining_time": "3:07:05"} {"current_steps": 505, "total_steps": 1155, "loss": 0.7183, "learning_rate": 6.055208552022787e-07, "epoch": 1.3091380427738173, "percentage": 43.72, "elapsed_time": "2:24:24", "remaining_time": "3:05:52"} {"current_steps": 510, "total_steps": 1155, "loss": 0.7188, "learning_rate": 5.988062566020986e-07, "epoch": 1.322099805573558, "percentage": 44.16, "elapsed_time": "2:25:29", "remaining_time": "3:04:00"} {"current_steps": 515, "total_steps": 1155, "loss": 0.6976, "learning_rate": 5.920730625637933e-07, "epoch": 1.3350615683732987, "percentage": 44.59, "elapsed_time": "2:26:35", "remaining_time": "3:02:09"} {"current_steps": 520, "total_steps": 1155, "loss": 0.7274, "learning_rate": 5.85322540281338e-07, "epoch": 1.3480233311730396, "percentage": 45.02, "elapsed_time": "2:27:40", "remaining_time": "3:00:19"} {"current_steps": 525, "total_steps": 1155, "loss": 0.7084, "learning_rate": 5.785559602099018e-07, "epoch": 1.3609850939727803, "percentage": 45.45, "elapsed_time": "2:28:45", "remaining_time": "2:58:30"} {"current_steps": 530, "total_steps": 1155, "loss": 0.7119, "learning_rate": 5.717745958267459e-07, "epoch": 1.373946856772521, "percentage": 45.89, "elapsed_time": "2:29:50", "remaining_time": "2:56:42"} {"current_steps": 535, "total_steps": 1155, "loss": 0.7086, "learning_rate": 5.649797233915538e-07, "epoch": 1.3869086195722617, "percentage": 46.32, "elapsed_time": "2:30:55", "remaining_time": "2:54:54"} {"current_steps": 540, "total_steps": 1155, "loss": 0.716, "learning_rate": 5.581726217062386e-07, "epoch": 1.3998703823720027, "percentage": 46.75, "elapsed_time": "2:32:01", "remaining_time": "2:53:08"} {"current_steps": 545, "total_steps": 1155, "loss": 0.7071, "learning_rate": 5.513545718742701e-07, "epoch": 1.4128321451717434, "percentage": 47.19, "elapsed_time": "2:33:06", "remaining_time": "2:51:22"} {"current_steps": 550, "total_steps": 1155, "loss": 0.6936, "learning_rate": 5.445268570595708e-07, "epoch": 1.425793907971484, "percentage": 47.62, "elapsed_time": "2:34:12", "remaining_time": "2:49:37"} {"current_steps": 550, "total_steps": 1155, "eval_loss": 0.7752651572227478, "epoch": 1.425793907971484, "percentage": 47.62, "elapsed_time": "2:37:22", "remaining_time": "2:53:07"} {"current_steps": 555, "total_steps": 1155, "loss": 0.7155, "learning_rate": 5.376907622450228e-07, "epoch": 1.4387556707712248, "percentage": 48.05, "elapsed_time": "2:38:28", "remaining_time": "2:51:19"} {"current_steps": 560, "total_steps": 1155, "loss": 0.7086, "learning_rate": 5.308475739906328e-07, "epoch": 1.4517174335709657, "percentage": 48.48, "elapsed_time": "2:39:33", "remaining_time": "2:49:31"} {"current_steps": 565, "total_steps": 1155, "loss": 0.7136, "learning_rate": 5.239985801913999e-07, "epoch": 1.4646791963707064, "percentage": 48.92, "elapsed_time": "2:40:38", "remaining_time": "2:47:45"} {"current_steps": 570, "total_steps": 1155, "loss": 0.7208, "learning_rate": 5.171450698349329e-07, "epoch": 1.4776409591704471, "percentage": 49.35, "elapsed_time": "2:41:44", "remaining_time": "2:45:59"} {"current_steps": 575, "total_steps": 1155, "loss": 0.7055, "learning_rate": 5.102883327588608e-07, "epoch": 1.490602721970188, "percentage": 49.78, "elapsed_time": "2:42:50", "remaining_time": "2:44:15"} {"current_steps": 580, "total_steps": 1155, "loss": 0.6824, "learning_rate": 5.034296594080848e-07, "epoch": 1.5035644847699285, "percentage": 50.22, "elapsed_time": "2:43:55", "remaining_time": "2:42:30"} {"current_steps": 585, "total_steps": 1155, "loss": 0.733, "learning_rate": 4.965703405919153e-07, "epoch": 1.5165262475696695, "percentage": 50.65, "elapsed_time": "2:45:00", "remaining_time": "2:40:46"} {"current_steps": 590, "total_steps": 1155, "loss": 0.7011, "learning_rate": 4.897116672411394e-07, "epoch": 1.5294880103694104, "percentage": 51.08, "elapsed_time": "2:46:06", "remaining_time": "2:39:03"} {"current_steps": 595, "total_steps": 1155, "loss": 0.7216, "learning_rate": 4.828549301650673e-07, "epoch": 1.5424497731691509, "percentage": 51.52, "elapsed_time": "2:47:10", "remaining_time": "2:37:20"} {"current_steps": 600, "total_steps": 1155, "loss": 0.7046, "learning_rate": 4.760014198086001e-07, "epoch": 1.5554115359688918, "percentage": 51.95, "elapsed_time": "2:48:16", "remaining_time": "2:35:39"} {"current_steps": 600, "total_steps": 1155, "eval_loss": 0.7716971039772034, "epoch": 1.5554115359688918, "percentage": 51.95, "elapsed_time": "2:51:26", "remaining_time": "2:38:35"} {"current_steps": 605, "total_steps": 1155, "loss": 0.7177, "learning_rate": 4.691524260093672e-07, "epoch": 1.5683732987686325, "percentage": 52.38, "elapsed_time": "2:53:04", "remaining_time": "2:37:20"} {"current_steps": 610, "total_steps": 1155, "loss": 0.698, "learning_rate": 4.6230923775497714e-07, "epoch": 1.5813350615683732, "percentage": 52.81, "elapsed_time": "2:54:09", "remaining_time": "2:35:36"} {"current_steps": 615, "total_steps": 1155, "loss": 0.7068, "learning_rate": 4.554731429404293e-07, "epoch": 1.5942968243681142, "percentage": 53.25, "elapsed_time": "2:55:14", "remaining_time": "2:33:52"} {"current_steps": 620, "total_steps": 1155, "loss": 0.7105, "learning_rate": 4.486454281257299e-07, "epoch": 1.6072585871678549, "percentage": 53.68, "elapsed_time": "2:56:20", "remaining_time": "2:32:10"} {"current_steps": 625, "total_steps": 1155, "loss": 0.7002, "learning_rate": 4.4182737829376135e-07, "epoch": 1.6202203499675956, "percentage": 54.11, "elapsed_time": "2:57:25", "remaining_time": "2:30:27"} {"current_steps": 630, "total_steps": 1155, "loss": 0.7132, "learning_rate": 4.35020276608446e-07, "epoch": 1.6331821127673365, "percentage": 54.55, "elapsed_time": "2:58:31", "remaining_time": "2:28:46"} {"current_steps": 635, "total_steps": 1155, "loss": 0.7239, "learning_rate": 4.2822540417325394e-07, "epoch": 1.646143875567077, "percentage": 54.98, "elapsed_time": "2:59:37", "remaining_time": "2:27:05"} {"current_steps": 640, "total_steps": 1155, "loss": 0.708, "learning_rate": 4.2144403979009823e-07, "epoch": 1.659105638366818, "percentage": 55.41, "elapsed_time": "3:00:42", "remaining_time": "2:25:25"} {"current_steps": 645, "total_steps": 1155, "loss": 0.7152, "learning_rate": 4.1467745971866214e-07, "epoch": 1.6720674011665586, "percentage": 55.84, "elapsed_time": "3:01:47", "remaining_time": "2:23:44"} {"current_steps": 650, "total_steps": 1155, "loss": 0.6967, "learning_rate": 4.0792693743620686e-07, "epoch": 1.6850291639662993, "percentage": 56.28, "elapsed_time": "3:02:53", "remaining_time": "2:22:05"} {"current_steps": 650, "total_steps": 1155, "eval_loss": 0.7689746618270874, "epoch": 1.6850291639662993, "percentage": 56.28, "elapsed_time": "3:06:04", "remaining_time": "2:24:34"} {"current_steps": 655, "total_steps": 1155, "loss": 0.7024, "learning_rate": 4.0119374339790133e-07, "epoch": 1.6979909267660402, "percentage": 56.71, "elapsed_time": "3:07:10", "remaining_time": "2:22:52"} {"current_steps": 660, "total_steps": 1155, "loss": 0.7242, "learning_rate": 3.944791447977213e-07, "epoch": 1.710952689565781, "percentage": 57.14, "elapsed_time": "3:08:15", "remaining_time": "2:21:11"} {"current_steps": 665, "total_steps": 1155, "loss": 0.7089, "learning_rate": 3.87784405329962e-07, "epoch": 1.7239144523655217, "percentage": 57.58, "elapsed_time": "3:09:21", "remaining_time": "2:19:31"} {"current_steps": 670, "total_steps": 1155, "loss": 0.7219, "learning_rate": 3.8111078495140973e-07, "epoch": 1.7368762151652626, "percentage": 58.01, "elapsed_time": "3:10:25", "remaining_time": "2:17:51"} {"current_steps": 675, "total_steps": 1155, "loss": 0.7078, "learning_rate": 3.7445953964421684e-07, "epoch": 1.7498379779650033, "percentage": 58.44, "elapsed_time": "3:11:31", "remaining_time": "2:16:11"} {"current_steps": 680, "total_steps": 1155, "loss": 0.7263, "learning_rate": 3.678319211795242e-07, "epoch": 1.762799740764744, "percentage": 58.87, "elapsed_time": "3:12:37", "remaining_time": "2:14:33"} {"current_steps": 685, "total_steps": 1155, "loss": 0.6994, "learning_rate": 3.6122917688187717e-07, "epoch": 1.775761503564485, "percentage": 59.31, "elapsed_time": "3:13:42", "remaining_time": "2:12:54"} {"current_steps": 690, "total_steps": 1155, "loss": 0.7112, "learning_rate": 3.546525493944773e-07, "epoch": 1.7887232663642254, "percentage": 59.74, "elapsed_time": "3:14:48", "remaining_time": "2:11:16"} {"current_steps": 695, "total_steps": 1155, "loss": 0.7145, "learning_rate": 3.48103276445316e-07, "epoch": 1.8016850291639663, "percentage": 60.17, "elapsed_time": "3:15:53", "remaining_time": "2:09:39"} {"current_steps": 700, "total_steps": 1155, "loss": 0.7197, "learning_rate": 3.4158259061423255e-07, "epoch": 1.814646791963707, "percentage": 60.61, "elapsed_time": "3:16:59", "remaining_time": "2:08:02"} {"current_steps": 700, "total_steps": 1155, "eval_loss": 0.765801727771759, "epoch": 1.814646791963707, "percentage": 60.61, "elapsed_time": "3:20:10", "remaining_time": "2:10:06"} {"current_steps": 705, "total_steps": 1155, "loss": 0.7008, "learning_rate": 3.3509171910094156e-07, "epoch": 1.8276085547634477, "percentage": 61.04, "elapsed_time": "3:21:48", "remaining_time": "2:08:48"} {"current_steps": 710, "total_steps": 1155, "loss": 0.7101, "learning_rate": 3.286318834940729e-07, "epoch": 1.8405703175631887, "percentage": 61.47, "elapsed_time": "3:22:53", "remaining_time": "2:07:10"} {"current_steps": 715, "total_steps": 1155, "loss": 0.6797, "learning_rate": 3.2220429954126686e-07, "epoch": 1.8535320803629294, "percentage": 61.9, "elapsed_time": "3:23:59", "remaining_time": "2:05:31"} {"current_steps": 720, "total_steps": 1155, "loss": 0.7056, "learning_rate": 3.158101769203698e-07, "epoch": 1.86649384316267, "percentage": 62.34, "elapsed_time": "3:25:04", "remaining_time": "2:03:53"} {"current_steps": 725, "total_steps": 1155, "loss": 0.7093, "learning_rate": 3.0945071901177145e-07, "epoch": 1.879455605962411, "percentage": 62.77, "elapsed_time": "3:26:10", "remaining_time": "2:02:16"} {"current_steps": 730, "total_steps": 1155, "loss": 0.7084, "learning_rate": 3.031271226719271e-07, "epoch": 1.8924173687621515, "percentage": 63.2, "elapsed_time": "3:27:15", "remaining_time": "2:00:40"} {"current_steps": 735, "total_steps": 1155, "loss": 0.7072, "learning_rate": 2.968405780081084e-07, "epoch": 1.9053791315618924, "percentage": 63.64, "elapsed_time": "3:28:21", "remaining_time": "1:59:03"} {"current_steps": 740, "total_steps": 1155, "loss": 0.6969, "learning_rate": 2.905922681544238e-07, "epoch": 1.9183408943616331, "percentage": 64.07, "elapsed_time": "3:29:27", "remaining_time": "1:57:27"} {"current_steps": 745, "total_steps": 1155, "loss": 0.6882, "learning_rate": 2.8438336904915184e-07, "epoch": 1.9313026571613738, "percentage": 64.5, "elapsed_time": "3:30:32", "remaining_time": "1:55:52"} {"current_steps": 750, "total_steps": 1155, "loss": 0.704, "learning_rate": 2.7821504921342774e-07, "epoch": 1.9442644199611148, "percentage": 64.94, "elapsed_time": "3:31:38", "remaining_time": "1:54:16"} {"current_steps": 750, "total_steps": 1155, "eval_loss": 0.7632837295532227, "epoch": 1.9442644199611148, "percentage": 64.94, "elapsed_time": "3:34:48", "remaining_time": "1:55:59"} {"current_steps": 755, "total_steps": 1155, "loss": 0.6927, "learning_rate": 2.7208846953132683e-07, "epoch": 1.9572261827608555, "percentage": 65.37, "elapsed_time": "3:35:54", "remaining_time": "1:54:23"} {"current_steps": 760, "total_steps": 1155, "loss": 0.7037, "learning_rate": 2.66004783031385e-07, "epoch": 1.9701879455605962, "percentage": 65.8, "elapsed_time": "3:36:59", "remaining_time": "1:52:46"} {"current_steps": 765, "total_steps": 1155, "loss": 0.6926, "learning_rate": 2.599651346695979e-07, "epoch": 1.983149708360337, "percentage": 66.23, "elapsed_time": "3:38:04", "remaining_time": "1:51:10"} {"current_steps": 770, "total_steps": 1155, "loss": 0.7111, "learning_rate": 2.539706611139385e-07, "epoch": 1.9961114711600778, "percentage": 66.67, "elapsed_time": "3:39:09", "remaining_time": "1:49:34"} {"current_steps": 775, "total_steps": 1155, "loss": 0.6801, "learning_rate": 2.480224905304352e-07, "epoch": 2.0090732339598185, "percentage": 67.1, "elapsed_time": "3:40:14", "remaining_time": "1:47:59"} {"current_steps": 780, "total_steps": 1155, "loss": 0.663, "learning_rate": 2.4212174237085005e-07, "epoch": 2.0220349967595594, "percentage": 67.53, "elapsed_time": "3:41:19", "remaining_time": "1:46:24"} {"current_steps": 785, "total_steps": 1155, "loss": 0.6784, "learning_rate": 2.3626952716199644e-07, "epoch": 2.0349967595593, "percentage": 67.97, "elapsed_time": "3:42:24", "remaining_time": "1:44:49"} {"current_steps": 790, "total_steps": 1155, "loss": 0.6293, "learning_rate": 2.3046694629673712e-07, "epoch": 2.047958522359041, "percentage": 68.4, "elapsed_time": "3:43:30", "remaining_time": "1:43:16"} {"current_steps": 795, "total_steps": 1155, "loss": 0.6489, "learning_rate": 2.247150918267008e-07, "epoch": 2.060920285158782, "percentage": 68.83, "elapsed_time": "3:44:36", "remaining_time": "1:41:42"} {"current_steps": 800, "total_steps": 1155, "loss": 0.6546, "learning_rate": 2.1901504625675688e-07, "epoch": 2.0738820479585223, "percentage": 69.26, "elapsed_time": "3:45:41", "remaining_time": "1:40:09"} {"current_steps": 800, "total_steps": 1155, "eval_loss": 0.7677435874938965, "epoch": 2.0738820479585223, "percentage": 69.26, "elapsed_time": "3:48:52", "remaining_time": "1:41:33"} {"current_steps": 805, "total_steps": 1155, "loss": 0.6676, "learning_rate": 2.1336788234128729e-07, "epoch": 2.086843810758263, "percentage": 69.7, "elapsed_time": "3:50:34", "remaining_time": "1:40:14"} {"current_steps": 810, "total_steps": 1155, "loss": 0.6629, "learning_rate": 2.0777466288229205e-07, "epoch": 2.0998055735580037, "percentage": 70.13, "elapsed_time": "3:51:39", "remaining_time": "1:38:40"} {"current_steps": 815, "total_steps": 1155, "loss": 0.6418, "learning_rate": 2.0223644052937028e-07, "epoch": 2.1127673363577446, "percentage": 70.56, "elapsed_time": "3:52:44", "remaining_time": "1:37:05"} {"current_steps": 820, "total_steps": 1155, "loss": 0.6531, "learning_rate": 1.9675425758160924e-07, "epoch": 2.1257290991574855, "percentage": 71.0, "elapsed_time": "3:53:49", "remaining_time": "1:35:31"} {"current_steps": 825, "total_steps": 1155, "loss": 0.6346, "learning_rate": 1.9132914579142338e-07, "epoch": 2.138690861957226, "percentage": 71.43, "elapsed_time": "3:54:54", "remaining_time": "1:33:57"} {"current_steps": 830, "total_steps": 1155, "loss": 0.6654, "learning_rate": 1.8596212617037693e-07, "epoch": 2.151652624756967, "percentage": 71.86, "elapsed_time": "3:55:59", "remaining_time": "1:32:24"} {"current_steps": 835, "total_steps": 1155, "loss": 0.6649, "learning_rate": 1.8065420879702887e-07, "epoch": 2.164614387556708, "percentage": 72.29, "elapsed_time": "3:57:05", "remaining_time": "1:30:51"} {"current_steps": 840, "total_steps": 1155, "loss": 0.6433, "learning_rate": 1.7540639262683487e-07, "epoch": 2.1775761503564484, "percentage": 72.73, "elapsed_time": "3:58:11", "remaining_time": "1:29:19"} {"current_steps": 845, "total_steps": 1155, "loss": 0.6769, "learning_rate": 1.70219665304143e-07, "epoch": 2.1905379131561893, "percentage": 73.16, "elapsed_time": "3:59:16", "remaining_time": "1:27:46"} {"current_steps": 850, "total_steps": 1155, "loss": 0.651, "learning_rate": 1.6509500297631785e-07, "epoch": 2.20349967595593, "percentage": 73.59, "elapsed_time": "4:00:22", "remaining_time": "1:26:14"} {"current_steps": 850, "total_steps": 1155, "eval_loss": 0.7672791481018066, "epoch": 2.20349967595593, "percentage": 73.59, "elapsed_time": "4:03:32", "remaining_time": "1:27:23"} {"current_steps": 855, "total_steps": 1155, "loss": 0.6564, "learning_rate": 1.6003337011002927e-07, "epoch": 2.2164614387556707, "percentage": 74.03, "elapsed_time": "4:04:38", "remaining_time": "1:25:50"} {"current_steps": 860, "total_steps": 1155, "loss": 0.6426, "learning_rate": 1.5503571930973785e-07, "epoch": 2.2294232015554116, "percentage": 74.46, "elapsed_time": "4:05:43", "remaining_time": "1:24:17"} {"current_steps": 865, "total_steps": 1155, "loss": 0.6518, "learning_rate": 1.5010299113841397e-07, "epoch": 2.242384964355152, "percentage": 74.89, "elapsed_time": "4:06:48", "remaining_time": "1:22:44"} {"current_steps": 870, "total_steps": 1155, "loss": 0.6475, "learning_rate": 1.4523611394052355e-07, "epoch": 2.255346727154893, "percentage": 75.32, "elapsed_time": "4:07:54", "remaining_time": "1:21:12"} {"current_steps": 875, "total_steps": 1155, "loss": 0.662, "learning_rate": 1.4043600366731213e-07, "epoch": 2.268308489954634, "percentage": 75.76, "elapsed_time": "4:08:59", "remaining_time": "1:19:40"} {"current_steps": 880, "total_steps": 1155, "loss": 0.6552, "learning_rate": 1.3570356370442189e-07, "epoch": 2.2812702527543745, "percentage": 76.19, "elapsed_time": "4:10:04", "remaining_time": "1:18:08"} {"current_steps": 885, "total_steps": 1155, "loss": 0.6476, "learning_rate": 1.3103968470187382e-07, "epoch": 2.2942320155541154, "percentage": 76.62, "elapsed_time": "4:11:09", "remaining_time": "1:16:37"} {"current_steps": 890, "total_steps": 1155, "loss": 0.6685, "learning_rate": 1.2644524440644627e-07, "epoch": 2.3071937783538563, "percentage": 77.06, "elapsed_time": "4:12:14", "remaining_time": "1:15:06"} {"current_steps": 895, "total_steps": 1155, "loss": 0.6655, "learning_rate": 1.2192110749648232e-07, "epoch": 2.320155541153597, "percentage": 77.49, "elapsed_time": "4:13:19", "remaining_time": "1:13:35"} {"current_steps": 900, "total_steps": 1155, "loss": 0.6601, "learning_rate": 1.1746812541915607e-07, "epoch": 2.3331173039533377, "percentage": 77.92, "elapsed_time": "4:14:24", "remaining_time": "1:12:04"} {"current_steps": 900, "total_steps": 1155, "eval_loss": 0.7666835188865662, "epoch": 2.3331173039533377, "percentage": 77.92, "elapsed_time": "4:17:35", "remaining_time": "1:12:58"} {"current_steps": 905, "total_steps": 1155, "loss": 0.6627, "learning_rate": 1.1308713623022986e-07, "epoch": 2.346079066753078, "percentage": 78.35, "elapsed_time": "4:19:15", "remaining_time": "1:11:37"} {"current_steps": 910, "total_steps": 1155, "loss": 0.6593, "learning_rate": 1.0877896443633117e-07, "epoch": 2.359040829552819, "percentage": 78.79, "elapsed_time": "4:20:21", "remaining_time": "1:10:05"} {"current_steps": 915, "total_steps": 1155, "loss": 0.6709, "learning_rate": 1.045444208397791e-07, "epoch": 2.37200259235256, "percentage": 79.22, "elapsed_time": "4:21:26", "remaining_time": "1:08:34"} {"current_steps": 920, "total_steps": 1155, "loss": 0.651, "learning_rate": 1.0038430238599154e-07, "epoch": 2.3849643551523005, "percentage": 79.65, "elapsed_time": "4:22:31", "remaining_time": "1:07:03"} {"current_steps": 925, "total_steps": 1155, "loss": 0.6588, "learning_rate": 9.629939201349852e-08, "epoch": 2.3979261179520415, "percentage": 80.09, "elapsed_time": "4:23:36", "remaining_time": "1:05:32"} {"current_steps": 930, "total_steps": 1155, "loss": 0.656, "learning_rate": 9.229045850659251e-08, "epoch": 2.4108878807517824, "percentage": 80.52, "elapsed_time": "4:24:41", "remaining_time": "1:04:02"} {"current_steps": 935, "total_steps": 1155, "loss": 0.6603, "learning_rate": 8.835825635064265e-08, "epoch": 2.423849643551523, "percentage": 80.95, "elapsed_time": "4:25:46", "remaining_time": "1:02:32"} {"current_steps": 940, "total_steps": 1155, "loss": 0.6572, "learning_rate": 8.450352559009949e-08, "epoch": 2.436811406351264, "percentage": 81.39, "elapsed_time": "4:26:51", "remaining_time": "1:01:02"} {"current_steps": 945, "total_steps": 1155, "loss": 0.6523, "learning_rate": 8.072699168921825e-08, "epoch": 2.4497731691510047, "percentage": 81.82, "elapsed_time": "4:27:57", "remaining_time": "0:59:32"} {"current_steps": 950, "total_steps": 1155, "loss": 0.6669, "learning_rate": 7.70293653955254e-08, "epoch": 2.462734931950745, "percentage": 82.25, "elapsed_time": "4:29:01", "remaining_time": "0:58:03"} {"current_steps": 950, "total_steps": 1155, "eval_loss": 0.7661544680595398, "epoch": 2.462734931950745, "percentage": 82.25, "elapsed_time": "4:32:12", "remaining_time": "0:58:44"} {"current_steps": 955, "total_steps": 1155, "loss": 0.6467, "learning_rate": 7.341134260605536e-08, "epoch": 2.475696694750486, "percentage": 82.68, "elapsed_time": "4:33:18", "remaining_time": "0:57:14"} {"current_steps": 960, "total_steps": 1155, "loss": 0.6451, "learning_rate": 6.987360423638205e-08, "epoch": 2.488658457550227, "percentage": 83.12, "elapsed_time": "4:34:23", "remaining_time": "0:55:44"} {"current_steps": 965, "total_steps": 1155, "loss": 0.6499, "learning_rate": 6.641681609246979e-08, "epoch": 2.5016202203499676, "percentage": 83.55, "elapsed_time": "4:35:28", "remaining_time": "0:54:14"} {"current_steps": 970, "total_steps": 1155, "loss": 0.6381, "learning_rate": 6.304162874536795e-08, "epoch": 2.5145819831497085, "percentage": 83.98, "elapsed_time": "4:36:33", "remaining_time": "0:52:44"} {"current_steps": 975, "total_steps": 1155, "loss": 0.6611, "learning_rate": 5.974867740877281e-08, "epoch": 2.527543745949449, "percentage": 84.42, "elapsed_time": "4:37:39", "remaining_time": "0:51:15"} {"current_steps": 980, "total_steps": 1155, "loss": 0.6511, "learning_rate": 5.653858181947979e-08, "epoch": 2.54050550874919, "percentage": 84.85, "elapsed_time": "4:38:45", "remaining_time": "0:49:46"} {"current_steps": 985, "total_steps": 1155, "loss": 0.645, "learning_rate": 5.341194612074823e-08, "epoch": 2.5534672715489304, "percentage": 85.28, "elapsed_time": "4:39:50", "remaining_time": "0:48:17"} {"current_steps": 990, "total_steps": 1155, "loss": 0.664, "learning_rate": 5.0369358748601096e-08, "epoch": 2.5664290343486713, "percentage": 85.71, "elapsed_time": "4:40:55", "remaining_time": "0:46:49"} {"current_steps": 995, "total_steps": 1155, "loss": 0.6768, "learning_rate": 4.74113923210806e-08, "epoch": 2.5793907971484122, "percentage": 86.15, "elapsed_time": "4:42:01", "remaining_time": "0:45:21"} {"current_steps": 1000, "total_steps": 1155, "loss": 0.6566, "learning_rate": 4.453860353048111e-08, "epoch": 2.5923525599481527, "percentage": 86.58, "elapsed_time": "4:43:06", "remaining_time": "0:43:52"} {"current_steps": 1000, "total_steps": 1155, "eval_loss": 0.7657259702682495, "epoch": 2.5923525599481527, "percentage": 86.58, "elapsed_time": "4:46:17", "remaining_time": "0:44:22"} {"current_steps": 1005, "total_steps": 1155, "loss": 0.6588, "learning_rate": 4.1751533038578866e-08, "epoch": 2.6053143227478937, "percentage": 87.01, "elapsed_time": "4:47:56", "remaining_time": "0:42:58"} {"current_steps": 1010, "total_steps": 1155, "loss": 0.6451, "learning_rate": 3.9050705374879086e-08, "epoch": 2.6182760855476346, "percentage": 87.45, "elapsed_time": "4:49:01", "remaining_time": "0:41:29"} {"current_steps": 1015, "total_steps": 1155, "loss": 0.6537, "learning_rate": 3.6436628837898773e-08, "epoch": 2.631237848347375, "percentage": 87.88, "elapsed_time": "4:50:07", "remaining_time": "0:40:01"} {"current_steps": 1020, "total_steps": 1155, "loss": 0.6646, "learning_rate": 3.390979539950478e-08, "epoch": 2.644199611147116, "percentage": 88.31, "elapsed_time": "4:51:13", "remaining_time": "0:38:32"} {"current_steps": 1025, "total_steps": 1155, "loss": 0.6398, "learning_rate": 3.1470680612323494e-08, "epoch": 2.657161373946857, "percentage": 88.74, "elapsed_time": "4:52:18", "remaining_time": "0:37:04"} {"current_steps": 1030, "total_steps": 1155, "loss": 0.656, "learning_rate": 2.9119743520242213e-08, "epoch": 2.6701231367465974, "percentage": 89.18, "elapsed_time": "4:53:23", "remaining_time": "0:35:36"} {"current_steps": 1035, "total_steps": 1155, "loss": 0.6522, "learning_rate": 2.6857426572016007e-08, "epoch": 2.6830848995463383, "percentage": 89.61, "elapsed_time": "4:54:29", "remaining_time": "0:34:08"} {"current_steps": 1040, "total_steps": 1155, "loss": 0.661, "learning_rate": 2.468415553799874e-08, "epoch": 2.6960466623460793, "percentage": 90.04, "elapsed_time": "4:55:34", "remaining_time": "0:32:41"} {"current_steps": 1045, "total_steps": 1155, "loss": 0.6543, "learning_rate": 2.2600339430012438e-08, "epoch": 2.7090084251458197, "percentage": 90.48, "elapsed_time": "4:56:40", "remaining_time": "0:31:13"} {"current_steps": 1050, "total_steps": 1155, "loss": 0.6654, "learning_rate": 2.0606370424370966e-08, "epoch": 2.7219701879455607, "percentage": 90.91, "elapsed_time": "4:57:45", "remaining_time": "0:29:46"} {"current_steps": 1050, "total_steps": 1155, "eval_loss": 0.765480101108551, "epoch": 2.7219701879455607, "percentage": 90.91, "elapsed_time": "5:00:56", "remaining_time": "0:30:05"} {"current_steps": 1055, "total_steps": 1155, "loss": 0.6585, "learning_rate": 1.8702623788072024e-08, "epoch": 2.7349319507453016, "percentage": 91.34, "elapsed_time": "5:02:01", "remaining_time": "0:28:37"} {"current_steps": 1060, "total_steps": 1155, "loss": 0.6765, "learning_rate": 1.688945780817147e-08, "epoch": 2.747893713545042, "percentage": 91.77, "elapsed_time": "5:03:07", "remaining_time": "0:27:09"} {"current_steps": 1065, "total_steps": 1155, "loss": 0.6578, "learning_rate": 1.516721372435342e-08, "epoch": 2.760855476344783, "percentage": 92.21, "elapsed_time": "5:04:12", "remaining_time": "0:25:42"} {"current_steps": 1070, "total_steps": 1155, "loss": 0.6681, "learning_rate": 1.3536215664708583e-08, "epoch": 2.7738172391445235, "percentage": 92.64, "elapsed_time": "5:05:18", "remaining_time": "0:24:15"} {"current_steps": 1075, "total_steps": 1155, "loss": 0.6412, "learning_rate": 1.1996770584732919e-08, "epoch": 2.7867790019442644, "percentage": 93.07, "elapsed_time": "5:06:23", "remaining_time": "0:22:48"} {"current_steps": 1080, "total_steps": 1155, "loss": 0.6748, "learning_rate": 1.0549168209558312e-08, "epoch": 2.7997407647440054, "percentage": 93.51, "elapsed_time": "5:07:29", "remaining_time": "0:21:21"} {"current_steps": 1085, "total_steps": 1155, "loss": 0.6433, "learning_rate": 9.193680979426189e-09, "epoch": 2.812702527543746, "percentage": 93.94, "elapsed_time": "5:08:33", "remaining_time": "0:19:54"} {"current_steps": 1090, "total_steps": 1155, "loss": 0.6621, "learning_rate": 7.930563998413797e-09, "epoch": 2.8256642903434868, "percentage": 94.37, "elapsed_time": "5:09:39", "remaining_time": "0:18:27"} {"current_steps": 1095, "total_steps": 1155, "loss": 0.6623, "learning_rate": 6.760054986423458e-09, "epoch": 2.8386260531432272, "percentage": 94.81, "elapsed_time": "5:10:44", "remaining_time": "0:17:01"} {"current_steps": 1100, "total_steps": 1155, "loss": 0.6389, "learning_rate": 5.6823742344433435e-09, "epoch": 2.851587815942968, "percentage": 95.24, "elapsed_time": "5:11:50", "remaining_time": "0:15:35"} {"current_steps": 1100, "total_steps": 1155, "eval_loss": 0.7652862668037415, "epoch": 2.851587815942968, "percentage": 95.24, "elapsed_time": "5:15:00", "remaining_time": "0:15:45"} {"current_steps": 1105, "total_steps": 1155, "loss": 0.6616, "learning_rate": 4.697724563088645e-09, "epoch": 2.864549578742709, "percentage": 95.67, "elapsed_time": "5:16:43", "remaining_time": "0:14:19"} {"current_steps": 1110, "total_steps": 1155, "loss": 0.6678, "learning_rate": 3.806291284430274e-09, "epoch": 2.8775113415424496, "percentage": 96.1, "elapsed_time": "5:17:48", "remaining_time": "0:12:53"} {"current_steps": 1115, "total_steps": 1155, "loss": 0.6533, "learning_rate": 3.008242167119257e-09, "epoch": 2.8904731043421905, "percentage": 96.54, "elapsed_time": "5:18:55", "remaining_time": "0:11:26"} {"current_steps": 1120, "total_steps": 1155, "loss": 0.6568, "learning_rate": 2.303727404812217e-09, "epoch": 2.9034348671419314, "percentage": 96.97, "elapsed_time": "5:19:59", "remaining_time": "0:09:59"} {"current_steps": 1125, "total_steps": 1155, "loss": 0.658, "learning_rate": 1.6928795879049828e-09, "epoch": 2.916396629941672, "percentage": 97.4, "elapsed_time": "5:21:05", "remaining_time": "0:08:33"} {"current_steps": 1130, "total_steps": 1155, "loss": 0.6591, "learning_rate": 1.1758136785788853e-09, "epoch": 2.929358392741413, "percentage": 97.84, "elapsed_time": "5:22:10", "remaining_time": "0:07:07"} {"current_steps": 1135, "total_steps": 1155, "loss": 0.6448, "learning_rate": 7.526269891646175e-10, "epoch": 2.942320155541154, "percentage": 98.27, "elapsed_time": "5:23:15", "remaining_time": "0:05:41"} {"current_steps": 1140, "total_steps": 1155, "loss": 0.6421, "learning_rate": 4.233991638281642e-10, "epoch": 2.9552819183408943, "percentage": 98.7, "elapsed_time": "5:24:20", "remaining_time": "0:04:16"} {"current_steps": 1145, "total_steps": 1155, "loss": 0.6606, "learning_rate": 1.8819216358156865e-10, "epoch": 2.968243681140635, "percentage": 99.13, "elapsed_time": "5:25:25", "remaining_time": "0:02:50"} {"current_steps": 1150, "total_steps": 1155, "loss": 0.6574, "learning_rate": 4.7050254621872064e-11, "epoch": 2.981205443940376, "percentage": 99.57, "elapsed_time": "5:26:31", "remaining_time": "0:01:25"} {"current_steps": 1150, "total_steps": 1155, "eval_loss": 0.7652673125267029, "epoch": 2.981205443940376, "percentage": 99.57, "elapsed_time": "5:29:42", "remaining_time": "0:01:26"} {"current_steps": 1155, "total_steps": 1155, "loss": 0.6573, "learning_rate": 0.0, "epoch": 2.9941672067401166, "percentage": 100.0, "elapsed_time": "5:30:47", "remaining_time": "0:00:00"} {"current_steps": 1155, "total_steps": 1155, "epoch": 2.9941672067401166, "percentage": 100.0, "elapsed_time": "5:31:23", "remaining_time": "0:00:00"}