File size: 49,606 Bytes
34fd41f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
{"current_steps": 5, "total_steps": 1107, "loss": 1.749, "learning_rate": 5e-07, "epoch": 0.013540961408259987, "percentage": 0.45, "elapsed_time": "0:01:09", "remaining_time": "4:14:16"}
{"current_steps": 10, "total_steps": 1107, "loss": 1.5921, "learning_rate": 1e-06, "epoch": 0.027081922816519974, "percentage": 0.9, "elapsed_time": "0:02:14", "remaining_time": "4:06:39"}
{"current_steps": 15, "total_steps": 1107, "loss": 1.2948, "learning_rate": 9.9994874230328e-07, "epoch": 0.040622884224779957, "percentage": 1.36, "elapsed_time": "0:03:20", "remaining_time": "4:02:42"}
{"current_steps": 20, "total_steps": 1107, "loss": 1.1393, "learning_rate": 9.997949797225268e-07, "epoch": 0.05416384563303995, "percentage": 1.81, "elapsed_time": "0:04:26", "remaining_time": "4:01:11"}
{"current_steps": 25, "total_steps": 1107, "loss": 1.0604, "learning_rate": 9.995387437838025e-07, "epoch": 0.06770480704129993, "percentage": 2.26, "elapsed_time": "0:05:31", "remaining_time": "3:59:19"}
{"current_steps": 30, "total_steps": 1107, "loss": 1.0272, "learning_rate": 9.991800870233637e-07, "epoch": 0.08124576844955991, "percentage": 2.71, "elapsed_time": "0:06:37", "remaining_time": "3:57:55"}
{"current_steps": 35, "total_steps": 1107, "loss": 1.003, "learning_rate": 9.98719082976888e-07, "epoch": 0.0947867298578199, "percentage": 3.16, "elapsed_time": "0:07:43", "remaining_time": "3:56:27"}
{"current_steps": 40, "total_steps": 1107, "loss": 0.9719, "learning_rate": 9.981558261643982e-07, "epoch": 0.1083276912660799, "percentage": 3.61, "elapsed_time": "0:08:49", "remaining_time": "3:55:26"}
{"current_steps": 45, "total_steps": 1107, "loss": 0.9584, "learning_rate": 9.97490432070881e-07, "epoch": 0.12186865267433988, "percentage": 4.07, "elapsed_time": "0:09:54", "remaining_time": "3:53:55"}
{"current_steps": 50, "total_steps": 1107, "loss": 0.9444, "learning_rate": 9.967230371226118e-07, "epoch": 0.13540961408259986, "percentage": 4.52, "elapsed_time": "0:10:59", "remaining_time": "3:52:30"}
{"current_steps": 50, "total_steps": 1107, "eval_loss": 0.9377400875091553, "epoch": 0.13540961408259986, "percentage": 4.52, "elapsed_time": "0:14:02", "remaining_time": "4:56:56"}
{"current_steps": 55, "total_steps": 1107, "loss": 0.9198, "learning_rate": 9.958537986591803e-07, "epoch": 0.14895057549085985, "percentage": 4.97, "elapsed_time": "0:15:08", "remaining_time": "4:49:34"}
{"current_steps": 60, "total_steps": 1107, "loss": 0.9181, "learning_rate": 9.948828949012327e-07, "epoch": 0.16249153689911983, "percentage": 5.42, "elapsed_time": "0:16:13", "remaining_time": "4:43:10"}
{"current_steps": 65, "total_steps": 1107, "loss": 0.9296, "learning_rate": 9.938105249139305e-07, "epoch": 0.17603249830737983, "percentage": 5.87, "elapsed_time": "0:17:18", "remaining_time": "4:37:31"}
{"current_steps": 70, "total_steps": 1107, "loss": 0.9241, "learning_rate": 9.92636908566136e-07, "epoch": 0.1895734597156398, "percentage": 6.32, "elapsed_time": "0:18:23", "remaining_time": "4:32:33"}
{"current_steps": 75, "total_steps": 1107, "loss": 0.8917, "learning_rate": 9.913622864853324e-07, "epoch": 0.2031144211238998, "percentage": 6.78, "elapsed_time": "0:19:29", "remaining_time": "4:28:08"}
{"current_steps": 80, "total_steps": 1107, "loss": 0.8988, "learning_rate": 9.89986920008288e-07, "epoch": 0.2166553825321598, "percentage": 7.23, "elapsed_time": "0:20:34", "remaining_time": "4:24:08"}
{"current_steps": 85, "total_steps": 1107, "loss": 0.8774, "learning_rate": 9.885110911274738e-07, "epoch": 0.23019634394041977, "percentage": 7.68, "elapsed_time": "0:21:40", "remaining_time": "4:20:36"}
{"current_steps": 90, "total_steps": 1107, "loss": 0.8787, "learning_rate": 9.869351024332466e-07, "epoch": 0.24373730534867977, "percentage": 8.13, "elapsed_time": "0:22:45", "remaining_time": "4:17:14"}
{"current_steps": 95, "total_steps": 1107, "loss": 0.8897, "learning_rate": 9.852592770518082e-07, "epoch": 0.25727826675693977, "percentage": 8.58, "elapsed_time": "0:23:51", "remaining_time": "4:14:08"}
{"current_steps": 100, "total_steps": 1107, "loss": 0.8668, "learning_rate": 9.834839585789557e-07, "epoch": 0.2708192281651997, "percentage": 9.03, "elapsed_time": "0:24:57", "remaining_time": "4:11:18"}
{"current_steps": 100, "total_steps": 1107, "eval_loss": 0.8815732002258301, "epoch": 0.2708192281651997, "percentage": 9.03, "elapsed_time": "0:28:00", "remaining_time": "4:42:01"}
{"current_steps": 105, "total_steps": 1107, "loss": 0.8806, "learning_rate": 9.816095110096324e-07, "epoch": 0.2843601895734597, "percentage": 9.49, "elapsed_time": "0:29:06", "remaining_time": "4:37:42"}
{"current_steps": 110, "total_steps": 1107, "loss": 0.8895, "learning_rate": 9.796363186632983e-07, "epoch": 0.2979011509817197, "percentage": 9.94, "elapsed_time": "0:30:11", "remaining_time": "4:33:40"}
{"current_steps": 115, "total_steps": 1107, "loss": 0.8675, "learning_rate": 9.775647861051328e-07, "epoch": 0.3114421123899797, "percentage": 10.39, "elapsed_time": "0:31:17", "remaining_time": "4:29:57"}
{"current_steps": 120, "total_steps": 1107, "loss": 0.8739, "learning_rate": 9.753953380630862e-07, "epoch": 0.32498307379823965, "percentage": 10.84, "elapsed_time": "0:32:23", "remaining_time": "4:26:26"}
{"current_steps": 125, "total_steps": 1107, "loss": 0.8536, "learning_rate": 9.731284193407981e-07, "epoch": 0.33852403520649965, "percentage": 11.29, "elapsed_time": "0:33:28", "remaining_time": "4:22:57"}
{"current_steps": 130, "total_steps": 1107, "loss": 0.8598, "learning_rate": 9.707644947263975e-07, "epoch": 0.35206499661475965, "percentage": 11.74, "elapsed_time": "0:34:34", "remaining_time": "4:19:49"}
{"current_steps": 135, "total_steps": 1107, "loss": 0.8628, "learning_rate": 9.683040488972086e-07, "epoch": 0.36560595802301965, "percentage": 12.2, "elapsed_time": "0:35:40", "remaining_time": "4:16:50"}
{"current_steps": 140, "total_steps": 1107, "loss": 0.8633, "learning_rate": 9.657475863203756e-07, "epoch": 0.3791469194312796, "percentage": 12.65, "elapsed_time": "0:36:46", "remaining_time": "4:13:58"}
{"current_steps": 145, "total_steps": 1107, "loss": 0.859, "learning_rate": 9.63095631149432e-07, "epoch": 0.3926878808395396, "percentage": 13.1, "elapsed_time": "0:37:52", "remaining_time": "4:11:15"}
{"current_steps": 150, "total_steps": 1107, "loss": 0.8436, "learning_rate": 9.603487271168336e-07, "epoch": 0.4062288422477996, "percentage": 13.55, "elapsed_time": "0:38:58", "remaining_time": "4:08:36"}
{"current_steps": 150, "total_steps": 1107, "eval_loss": 0.8559273481369019, "epoch": 0.4062288422477996, "percentage": 13.55, "elapsed_time": "0:42:01", "remaining_time": "4:28:04"}
{"current_steps": 155, "total_steps": 1107, "loss": 0.8431, "learning_rate": 9.575074374224758e-07, "epoch": 0.4197698036560596, "percentage": 14.0, "elapsed_time": "0:43:06", "remaining_time": "4:24:48"}
{"current_steps": 160, "total_steps": 1107, "loss": 0.8466, "learning_rate": 9.545723446182201e-07, "epoch": 0.4333107650643196, "percentage": 14.45, "elapsed_time": "0:44:12", "remaining_time": "4:21:38"}
{"current_steps": 165, "total_steps": 1107, "loss": 0.829, "learning_rate": 9.515440504884539e-07, "epoch": 0.44685172647257954, "percentage": 14.91, "elapsed_time": "0:45:17", "remaining_time": "4:18:37"}
{"current_steps": 170, "total_steps": 1107, "loss": 0.8462, "learning_rate": 9.484231759267054e-07, "epoch": 0.46039268788083954, "percentage": 15.36, "elapsed_time": "0:46:23", "remaining_time": "4:15:43"}
{"current_steps": 175, "total_steps": 1107, "loss": 0.8602, "learning_rate": 9.452103608083417e-07, "epoch": 0.47393364928909953, "percentage": 15.81, "elapsed_time": "0:47:29", "remaining_time": "4:12:53"}
{"current_steps": 180, "total_steps": 1107, "loss": 0.8266, "learning_rate": 9.419062638593748e-07, "epoch": 0.48747461069735953, "percentage": 16.26, "elapsed_time": "0:48:34", "remaining_time": "4:10:11"}
{"current_steps": 185, "total_steps": 1107, "loss": 0.8219, "learning_rate": 9.385115625214021e-07, "epoch": 0.5010155721056195, "percentage": 16.71, "elapsed_time": "0:49:40", "remaining_time": "4:07:32"}
{"current_steps": 190, "total_steps": 1107, "loss": 0.8438, "learning_rate": 9.350269528127101e-07, "epoch": 0.5145565335138795, "percentage": 17.16, "elapsed_time": "0:50:45", "remaining_time": "4:04:57"}
{"current_steps": 195, "total_steps": 1107, "loss": 0.8337, "learning_rate": 9.31453149185569e-07, "epoch": 0.5280974949221394, "percentage": 17.62, "elapsed_time": "0:51:50", "remaining_time": "4:02:27"}
{"current_steps": 200, "total_steps": 1107, "loss": 0.8192, "learning_rate": 9.277908843797492e-07, "epoch": 0.5416384563303994, "percentage": 18.07, "elapsed_time": "0:52:55", "remaining_time": "4:00:02"}
{"current_steps": 200, "total_steps": 1107, "eval_loss": 0.8383815884590149, "epoch": 0.5416384563303994, "percentage": 18.07, "elapsed_time": "0:55:58", "remaining_time": "4:13:52"}
{"current_steps": 205, "total_steps": 1107, "loss": 0.8483, "learning_rate": 9.240409092722852e-07, "epoch": 0.5551794177386594, "percentage": 18.52, "elapsed_time": "0:57:03", "remaining_time": "4:11:03"}
{"current_steps": 210, "total_steps": 1107, "loss": 0.8109, "learning_rate": 9.20203992723524e-07, "epoch": 0.5687203791469194, "percentage": 18.97, "elapsed_time": "0:58:09", "remaining_time": "4:08:24"}
{"current_steps": 215, "total_steps": 1107, "loss": 0.8335, "learning_rate": 9.162809214194851e-07, "epoch": 0.5822613405551794, "percentage": 19.42, "elapsed_time": "0:59:14", "remaining_time": "4:05:48"}
{"current_steps": 220, "total_steps": 1107, "loss": 0.8465, "learning_rate": 9.122724997105646e-07, "epoch": 0.5958023019634394, "percentage": 19.87, "elapsed_time": "1:00:20", "remaining_time": "4:03:15"}
{"current_steps": 225, "total_steps": 1107, "loss": 0.8257, "learning_rate": 9.0817954944662e-07, "epoch": 0.6093432633716994, "percentage": 20.33, "elapsed_time": "1:01:25", "remaining_time": "4:00:46"}
{"current_steps": 230, "total_steps": 1107, "loss": 0.8479, "learning_rate": 9.040029098084643e-07, "epoch": 0.6228842247799594, "percentage": 20.78, "elapsed_time": "1:02:31", "remaining_time": "3:58:22"}
{"current_steps": 235, "total_steps": 1107, "loss": 0.8412, "learning_rate": 8.997434371358092e-07, "epoch": 0.6364251861882194, "percentage": 21.23, "elapsed_time": "1:03:35", "remaining_time": "3:55:58"}
{"current_steps": 240, "total_steps": 1107, "loss": 0.7984, "learning_rate": 8.954020047516884e-07, "epoch": 0.6499661475964793, "percentage": 21.68, "elapsed_time": "1:04:40", "remaining_time": "3:53:38"}
{"current_steps": 245, "total_steps": 1107, "loss": 0.834, "learning_rate": 8.909795027833996e-07, "epoch": 0.6635071090047393, "percentage": 22.13, "elapsed_time": "1:05:46", "remaining_time": "3:51:23"}
{"current_steps": 250, "total_steps": 1107, "loss": 0.8285, "learning_rate": 8.864768379800016e-07, "epoch": 0.6770480704129993, "percentage": 22.58, "elapsed_time": "1:06:51", "remaining_time": "3:49:10"}
{"current_steps": 250, "total_steps": 1107, "eval_loss": 0.8261091709136963, "epoch": 0.6770480704129993, "percentage": 22.58, "elapsed_time": "1:09:54", "remaining_time": "3:59:37"}
{"current_steps": 255, "total_steps": 1107, "loss": 0.8322, "learning_rate": 8.81894933526402e-07, "epoch": 0.6905890318212593, "percentage": 23.04, "elapsed_time": "1:10:58", "remaining_time": "3:57:08"}
{"current_steps": 260, "total_steps": 1107, "loss": 0.8384, "learning_rate": 8.772347288540763e-07, "epoch": 0.7041299932295193, "percentage": 23.49, "elapsed_time": "1:12:04", "remaining_time": "3:54:46"}
{"current_steps": 265, "total_steps": 1107, "loss": 0.8263, "learning_rate": 8.724971794484555e-07, "epoch": 0.7176709546377793, "percentage": 23.94, "elapsed_time": "1:13:10", "remaining_time": "3:52:30"}
{"current_steps": 270, "total_steps": 1107, "loss": 0.8165, "learning_rate": 8.676832566530221e-07, "epoch": 0.7312119160460393, "percentage": 24.39, "elapsed_time": "1:14:16", "remaining_time": "3:50:15"}
{"current_steps": 275, "total_steps": 1107, "loss": 0.8037, "learning_rate": 8.62793947470155e-07, "epoch": 0.7447528774542993, "percentage": 24.84, "elapsed_time": "1:15:21", "remaining_time": "3:48:00"}
{"current_steps": 280, "total_steps": 1107, "loss": 0.7896, "learning_rate": 8.578302543587629e-07, "epoch": 0.7582938388625592, "percentage": 25.29, "elapsed_time": "1:16:27", "remaining_time": "3:45:48"}
{"current_steps": 285, "total_steps": 1107, "loss": 0.8129, "learning_rate": 8.527931950287506e-07, "epoch": 0.7718348002708192, "percentage": 25.75, "elapsed_time": "1:17:33", "remaining_time": "3:43:40"}
{"current_steps": 290, "total_steps": 1107, "loss": 0.8182, "learning_rate": 8.47683802232356e-07, "epoch": 0.7853757616790792, "percentage": 26.2, "elapsed_time": "1:18:38", "remaining_time": "3:41:34"}
{"current_steps": 295, "total_steps": 1107, "loss": 0.8256, "learning_rate": 8.425031235524045e-07, "epoch": 0.7989167230873392, "percentage": 26.65, "elapsed_time": "1:19:44", "remaining_time": "3:39:30"}
{"current_steps": 300, "total_steps": 1107, "loss": 0.8132, "learning_rate": 8.372522211875224e-07, "epoch": 0.8124576844955992, "percentage": 27.1, "elapsed_time": "1:20:50", "remaining_time": "3:37:27"}
{"current_steps": 300, "total_steps": 1107, "eval_loss": 0.8165345191955566, "epoch": 0.8124576844955992, "percentage": 27.1, "elapsed_time": "1:23:53", "remaining_time": "3:45:39"}
{"current_steps": 305, "total_steps": 1107, "loss": 0.8149, "learning_rate": 8.319321717343535e-07, "epoch": 0.8259986459038592, "percentage": 27.55, "elapsed_time": "1:24:58", "remaining_time": "3:43:26"}
{"current_steps": 310, "total_steps": 1107, "loss": 0.8124, "learning_rate": 8.265440659668234e-07, "epoch": 0.8395396073121192, "percentage": 28.0, "elapsed_time": "1:26:03", "remaining_time": "3:41:15"}
{"current_steps": 315, "total_steps": 1107, "loss": 0.7906, "learning_rate": 8.210890086124977e-07, "epoch": 0.8530805687203792, "percentage": 28.46, "elapsed_time": "1:27:09", "remaining_time": "3:39:09"}
{"current_steps": 320, "total_steps": 1107, "loss": 0.81, "learning_rate": 8.155681181260776e-07, "epoch": 0.8666215301286392, "percentage": 28.91, "elapsed_time": "1:28:15", "remaining_time": "3:37:04"}
{"current_steps": 325, "total_steps": 1107, "loss": 0.818, "learning_rate": 8.099825264600842e-07, "epoch": 0.8801624915368991, "percentage": 29.36, "elapsed_time": "1:29:20", "remaining_time": "3:34:57"}
{"current_steps": 330, "total_steps": 1107, "loss": 0.8067, "learning_rate": 8.04333378832772e-07, "epoch": 0.8937034529451591, "percentage": 29.81, "elapsed_time": "1:30:25", "remaining_time": "3:32:54"}
{"current_steps": 335, "total_steps": 1107, "loss": 0.802, "learning_rate": 7.98621833493324e-07, "epoch": 0.9072444143534191, "percentage": 30.26, "elapsed_time": "1:31:31", "remaining_time": "3:30:54"}
{"current_steps": 340, "total_steps": 1107, "loss": 0.7991, "learning_rate": 7.928490614843757e-07, "epoch": 0.9207853757616791, "percentage": 30.71, "elapsed_time": "1:32:36", "remaining_time": "3:28:55"}
{"current_steps": 345, "total_steps": 1107, "loss": 0.7961, "learning_rate": 7.870162464019143e-07, "epoch": 0.9343263371699391, "percentage": 31.17, "elapsed_time": "1:33:42", "remaining_time": "3:26:57"}
{"current_steps": 350, "total_steps": 1107, "loss": 0.7997, "learning_rate": 7.811245841526062e-07, "epoch": 0.9478672985781991, "percentage": 31.62, "elapsed_time": "1:34:48", "remaining_time": "3:25:02"}
{"current_steps": 350, "total_steps": 1107, "eval_loss": 0.8075853586196899, "epoch": 0.9478672985781991, "percentage": 31.62, "elapsed_time": "1:37:50", "remaining_time": "3:31:37"}
{"current_steps": 355, "total_steps": 1107, "loss": 0.7955, "learning_rate": 7.75175282708598e-07, "epoch": 0.9614082599864591, "percentage": 32.07, "elapsed_time": "1:38:56", "remaining_time": "3:29:35"}
{"current_steps": 360, "total_steps": 1107, "loss": 0.7945, "learning_rate": 7.691695618598466e-07, "epoch": 0.9749492213947191, "percentage": 32.52, "elapsed_time": "1:40:01", "remaining_time": "3:27:32"}
{"current_steps": 365, "total_steps": 1107, "loss": 0.8037, "learning_rate": 7.631086529640229e-07, "epoch": 0.988490182802979, "percentage": 32.97, "elapsed_time": "1:41:07", "remaining_time": "3:25:34"}
{"current_steps": 370, "total_steps": 1107, "loss": 0.7833, "learning_rate": 7.569937986940475e-07, "epoch": 1.002031144211239, "percentage": 33.42, "elapsed_time": "1:42:13", "remaining_time": "3:23:36"}
{"current_steps": 375, "total_steps": 1107, "loss": 0.736, "learning_rate": 7.508262527833028e-07, "epoch": 1.015572105619499, "percentage": 33.88, "elapsed_time": "1:43:19", "remaining_time": "3:21:40"}
{"current_steps": 380, "total_steps": 1107, "loss": 0.7393, "learning_rate": 7.446072797685799e-07, "epoch": 1.029113067027759, "percentage": 34.33, "elapsed_time": "1:44:23", "remaining_time": "3:19:43"}
{"current_steps": 385, "total_steps": 1107, "loss": 0.7461, "learning_rate": 7.383381547308099e-07, "epoch": 1.042654028436019, "percentage": 34.78, "elapsed_time": "1:45:29", "remaining_time": "3:17:49"}
{"current_steps": 390, "total_steps": 1107, "loss": 0.7359, "learning_rate": 7.320201630336318e-07, "epoch": 1.0561949898442788, "percentage": 35.23, "elapsed_time": "1:46:34", "remaining_time": "3:15:56"}
{"current_steps": 395, "total_steps": 1107, "loss": 0.7306, "learning_rate": 7.256546000598551e-07, "epoch": 1.0697359512525388, "percentage": 35.68, "elapsed_time": "1:47:40", "remaining_time": "3:14:05"}
{"current_steps": 400, "total_steps": 1107, "loss": 0.7335, "learning_rate": 7.192427709458655e-07, "epoch": 1.0832769126607988, "percentage": 36.13, "elapsed_time": "1:48:45", "remaining_time": "3:12:14"}
{"current_steps": 400, "total_steps": 1107, "eval_loss": 0.804972231388092, "epoch": 1.0832769126607988, "percentage": 36.13, "elapsed_time": "1:51:48", "remaining_time": "3:17:37"}
{"current_steps": 405, "total_steps": 1107, "loss": 0.7346, "learning_rate": 7.127859903140311e-07, "epoch": 1.0968178740690588, "percentage": 36.59, "elapsed_time": "1:52:54", "remaining_time": "3:15:42"}
{"current_steps": 410, "total_steps": 1107, "loss": 0.7409, "learning_rate": 7.062855820031659e-07, "epoch": 1.1103588354773188, "percentage": 37.04, "elapsed_time": "1:54:00", "remaining_time": "3:13:48"}
{"current_steps": 415, "total_steps": 1107, "loss": 0.7236, "learning_rate": 6.997428787971005e-07, "epoch": 1.1238997968855788, "percentage": 37.49, "elapsed_time": "1:55:05", "remaining_time": "3:11:53"}
{"current_steps": 420, "total_steps": 1107, "loss": 0.734, "learning_rate": 6.93159222151422e-07, "epoch": 1.1374407582938388, "percentage": 37.94, "elapsed_time": "1:56:10", "remaining_time": "3:10:01"}
{"current_steps": 425, "total_steps": 1107, "loss": 0.7425, "learning_rate": 6.86535961918433e-07, "epoch": 1.1509817197020988, "percentage": 38.39, "elapsed_time": "1:57:15", "remaining_time": "3:08:09"}
{"current_steps": 430, "total_steps": 1107, "loss": 0.7271, "learning_rate": 6.798744560703904e-07, "epoch": 1.1645226811103588, "percentage": 38.84, "elapsed_time": "1:58:21", "remaining_time": "3:06:20"}
{"current_steps": 435, "total_steps": 1107, "loss": 0.729, "learning_rate": 6.731760704210802e-07, "epoch": 1.1780636425186188, "percentage": 39.3, "elapsed_time": "1:59:27", "remaining_time": "3:04:32"}
{"current_steps": 440, "total_steps": 1107, "loss": 0.7295, "learning_rate": 6.66442178345783e-07, "epoch": 1.1916046039268788, "percentage": 39.75, "elapsed_time": "2:00:32", "remaining_time": "3:02:43"}
{"current_steps": 445, "total_steps": 1107, "loss": 0.7285, "learning_rate": 6.596741604996897e-07, "epoch": 1.2051455653351388, "percentage": 40.2, "elapsed_time": "2:01:37", "remaining_time": "3:00:56"}
{"current_steps": 450, "total_steps": 1107, "loss": 0.7466, "learning_rate": 6.528734045348248e-07, "epoch": 1.2186865267433988, "percentage": 40.65, "elapsed_time": "2:02:43", "remaining_time": "2:59:10"}
{"current_steps": 450, "total_steps": 1107, "eval_loss": 0.7996942400932312, "epoch": 1.2186865267433988, "percentage": 40.65, "elapsed_time": "2:05:45", "remaining_time": "3:03:37"}
{"current_steps": 455, "total_steps": 1107, "loss": 0.7291, "learning_rate": 6.460413048155354e-07, "epoch": 1.2322274881516588, "percentage": 41.1, "elapsed_time": "2:06:50", "remaining_time": "3:01:45"}
{"current_steps": 460, "total_steps": 1107, "loss": 0.7502, "learning_rate": 6.391792621326027e-07, "epoch": 1.2457684495599188, "percentage": 41.55, "elapsed_time": "2:07:55", "remaining_time": "2:59:55"}
{"current_steps": 465, "total_steps": 1107, "loss": 0.7375, "learning_rate": 6.322886834160377e-07, "epoch": 1.2593094109681786, "percentage": 42.01, "elapsed_time": "2:09:01", "remaining_time": "2:58:08"}
{"current_steps": 470, "total_steps": 1107, "loss": 0.7446, "learning_rate": 6.253709814466167e-07, "epoch": 1.2728503723764386, "percentage": 42.46, "elapsed_time": "2:10:06", "remaining_time": "2:56:20"}
{"current_steps": 475, "total_steps": 1107, "loss": 0.7307, "learning_rate": 6.184275745662179e-07, "epoch": 1.2863913337846986, "percentage": 42.91, "elapsed_time": "2:11:12", "remaining_time": "2:54:34"}
{"current_steps": 480, "total_steps": 1107, "loss": 0.727, "learning_rate": 6.114598863870178e-07, "epoch": 1.2999322951929586, "percentage": 43.36, "elapsed_time": "2:12:17", "remaining_time": "2:52:48"}
{"current_steps": 485, "total_steps": 1107, "loss": 0.7351, "learning_rate": 6.044693454996059e-07, "epoch": 1.3134732566012186, "percentage": 43.81, "elapsed_time": "2:13:23", "remaining_time": "2:51:04"}
{"current_steps": 490, "total_steps": 1107, "loss": 0.7376, "learning_rate": 5.974573851800817e-07, "epoch": 1.3270142180094786, "percentage": 44.26, "elapsed_time": "2:14:29", "remaining_time": "2:49:20"}
{"current_steps": 495, "total_steps": 1107, "loss": 0.7413, "learning_rate": 5.904254430961869e-07, "epoch": 1.3405551794177386, "percentage": 44.72, "elapsed_time": "2:15:34", "remaining_time": "2:47:36"}
{"current_steps": 500, "total_steps": 1107, "loss": 0.7264, "learning_rate": 5.833749610125401e-07, "epoch": 1.3540961408259986, "percentage": 45.17, "elapsed_time": "2:16:40", "remaining_time": "2:45:55"}
{"current_steps": 500, "total_steps": 1107, "eval_loss": 0.7957150340080261, "epoch": 1.3540961408259986, "percentage": 45.17, "elapsed_time": "2:19:43", "remaining_time": "2:49:37"}
{"current_steps": 505, "total_steps": 1107, "loss": 0.7327, "learning_rate": 5.763073844950309e-07, "epoch": 1.3676371022342586, "percentage": 45.62, "elapsed_time": "2:20:48", "remaining_time": "2:47:51"}
{"current_steps": 510, "total_steps": 1107, "loss": 0.7443, "learning_rate": 5.69224162614434e-07, "epoch": 1.3811780636425186, "percentage": 46.07, "elapsed_time": "2:21:53", "remaining_time": "2:46:06"}
{"current_steps": 515, "total_steps": 1107, "loss": 0.7345, "learning_rate": 5.621267476493052e-07, "epoch": 1.3947190250507786, "percentage": 46.52, "elapsed_time": "2:22:59", "remaining_time": "2:44:21"}
{"current_steps": 520, "total_steps": 1107, "loss": 0.7236, "learning_rate": 5.550165947882196e-07, "epoch": 1.4082599864590386, "percentage": 46.97, "elapsed_time": "2:24:04", "remaining_time": "2:42:38"}
{"current_steps": 525, "total_steps": 1107, "loss": 0.7165, "learning_rate": 5.478951618314132e-07, "epoch": 1.4218009478672986, "percentage": 47.43, "elapsed_time": "2:25:09", "remaining_time": "2:40:55"}
{"current_steps": 530, "total_steps": 1107, "loss": 0.7297, "learning_rate": 5.407639088918888e-07, "epoch": 1.4353419092755586, "percentage": 47.88, "elapsed_time": "2:26:15", "remaining_time": "2:39:13"}
{"current_steps": 535, "total_steps": 1107, "loss": 0.7307, "learning_rate": 5.33624298096048e-07, "epoch": 1.4488828706838186, "percentage": 48.33, "elapsed_time": "2:27:21", "remaining_time": "2:37:32"}
{"current_steps": 540, "total_steps": 1107, "loss": 0.7487, "learning_rate": 5.264777932839104e-07, "epoch": 1.4624238320920786, "percentage": 48.78, "elapsed_time": "2:28:27", "remaining_time": "2:35:52"}
{"current_steps": 545, "total_steps": 1107, "loss": 0.7291, "learning_rate": 5.193258597089809e-07, "epoch": 1.4759647935003386, "percentage": 49.23, "elapsed_time": "2:29:32", "remaining_time": "2:34:12"}
{"current_steps": 550, "total_steps": 1107, "loss": 0.7286, "learning_rate": 5.121699637378282e-07, "epoch": 1.4895057549085986, "percentage": 49.68, "elapsed_time": "2:30:38", "remaining_time": "2:32:33"}
{"current_steps": 550, "total_steps": 1107, "eval_loss": 0.7910673022270203, "epoch": 1.4895057549085986, "percentage": 49.68, "elapsed_time": "2:33:41", "remaining_time": "2:35:38"}
{"current_steps": 555, "total_steps": 1107, "loss": 0.7179, "learning_rate": 5.050115725494339e-07, "epoch": 1.5030467163168586, "percentage": 50.14, "elapsed_time": "2:34:46", "remaining_time": "2:33:56"}
{"current_steps": 560, "total_steps": 1107, "loss": 0.7366, "learning_rate": 4.978521538343764e-07, "epoch": 1.5165876777251186, "percentage": 50.59, "elapsed_time": "2:35:51", "remaining_time": "2:32:14"}
{"current_steps": 565, "total_steps": 1107, "loss": 0.7391, "learning_rate": 4.906931754939083e-07, "epoch": 1.5301286391333786, "percentage": 51.04, "elapsed_time": "2:36:57", "remaining_time": "2:30:34"}
{"current_steps": 570, "total_steps": 1107, "loss": 0.7288, "learning_rate": 4.835361053389921e-07, "epoch": 1.5436696005416386, "percentage": 51.49, "elapsed_time": "2:38:03", "remaining_time": "2:28:54"}
{"current_steps": 575, "total_steps": 1107, "loss": 0.729, "learning_rate": 4.763824107893532e-07, "epoch": 1.5572105619498986, "percentage": 51.94, "elapsed_time": "2:39:09", "remaining_time": "2:27:15"}
{"current_steps": 580, "total_steps": 1107, "loss": 0.7177, "learning_rate": 4.692335585726145e-07, "epoch": 1.5707515233581584, "percentage": 52.39, "elapsed_time": "2:40:15", "remaining_time": "2:25:36"}
{"current_steps": 585, "total_steps": 1107, "loss": 0.7224, "learning_rate": 4.6209101442357116e-07, "epoch": 1.5842924847664184, "percentage": 52.85, "elapsed_time": "2:41:20", "remaining_time": "2:23:58"}
{"current_steps": 590, "total_steps": 1107, "loss": 0.7327, "learning_rate": 4.549562427836701e-07, "epoch": 1.5978334461746784, "percentage": 53.3, "elapsed_time": "2:42:26", "remaining_time": "2:22:20"}
{"current_steps": 595, "total_steps": 1107, "loss": 0.7406, "learning_rate": 4.4783070650075537e-07, "epoch": 1.6113744075829384, "percentage": 53.75, "elapsed_time": "2:43:30", "remaining_time": "2:20:42"}
{"current_steps": 600, "total_steps": 1107, "loss": 0.7251, "learning_rate": 4.407158665291376e-07, "epoch": 1.6249153689911984, "percentage": 54.2, "elapsed_time": "2:44:36", "remaining_time": "2:19:05"}
{"current_steps": 600, "total_steps": 1107, "eval_loss": 0.7875649333000183, "epoch": 1.6249153689911984, "percentage": 54.2, "elapsed_time": "2:47:39", "remaining_time": "2:21:40"}
{"current_steps": 605, "total_steps": 1107, "loss": 0.719, "learning_rate": 4.336131816300548e-07, "epoch": 1.6384563303994584, "percentage": 54.65, "elapsed_time": "2:48:44", "remaining_time": "2:20:01"}
{"current_steps": 610, "total_steps": 1107, "loss": 0.7287, "learning_rate": 4.265241080725808e-07, "epoch": 1.6519972918077184, "percentage": 55.1, "elapsed_time": "2:49:50", "remaining_time": "2:18:22"}
{"current_steps": 615, "total_steps": 1107, "loss": 0.7399, "learning_rate": 4.194500993350453e-07, "epoch": 1.6655382532159784, "percentage": 55.56, "elapsed_time": "2:50:56", "remaining_time": "2:16:44"}
{"current_steps": 620, "total_steps": 1107, "loss": 0.7386, "learning_rate": 4.1239260580702634e-07, "epoch": 1.6790792146242384, "percentage": 56.01, "elapsed_time": "2:52:01", "remaining_time": "2:15:07"}
{"current_steps": 625, "total_steps": 1107, "loss": 0.7246, "learning_rate": 4.053530744919749e-07, "epoch": 1.6926201760324981, "percentage": 56.46, "elapsed_time": "2:53:07", "remaining_time": "2:13:30"}
{"current_steps": 630, "total_steps": 1107, "loss": 0.7372, "learning_rate": 3.983329487105363e-07, "epoch": 1.7061611374407581, "percentage": 56.91, "elapsed_time": "2:54:12", "remaining_time": "2:11:53"}
{"current_steps": 635, "total_steps": 1107, "loss": 0.7323, "learning_rate": 3.913336678046232e-07, "epoch": 1.7197020988490181, "percentage": 57.36, "elapsed_time": "2:55:17", "remaining_time": "2:10:17"}
{"current_steps": 640, "total_steps": 1107, "loss": 0.7097, "learning_rate": 3.8435666684230726e-07, "epoch": 1.7332430602572781, "percentage": 57.81, "elapsed_time": "2:56:23", "remaining_time": "2:08:42"}
{"current_steps": 645, "total_steps": 1107, "loss": 0.7304, "learning_rate": 3.774033763235861e-07, "epoch": 1.7467840216655381, "percentage": 58.27, "elapsed_time": "2:57:28", "remaining_time": "2:07:07"}
{"current_steps": 650, "total_steps": 1107, "loss": 0.727, "learning_rate": 3.7047522188708606e-07, "epoch": 1.7603249830737981, "percentage": 58.72, "elapsed_time": "2:58:33", "remaining_time": "2:05:32"}
{"current_steps": 650, "total_steps": 1107, "eval_loss": 0.7839689254760742, "epoch": 1.7603249830737981, "percentage": 58.72, "elapsed_time": "3:01:36", "remaining_time": "2:07:41"}
{"current_steps": 655, "total_steps": 1107, "loss": 0.7223, "learning_rate": 3.635736240177627e-07, "epoch": 1.7738659444820581, "percentage": 59.17, "elapsed_time": "3:02:41", "remaining_time": "2:06:04"}
{"current_steps": 660, "total_steps": 1107, "loss": 0.7313, "learning_rate": 3.5669999775565816e-07, "epoch": 1.7874069058903181, "percentage": 59.62, "elapsed_time": "3:03:47", "remaining_time": "2:04:28"}
{"current_steps": 665, "total_steps": 1107, "loss": 0.7321, "learning_rate": 3.4985575240577365e-07, "epoch": 1.8009478672985781, "percentage": 60.07, "elapsed_time": "3:04:53", "remaining_time": "2:02:53"}
{"current_steps": 670, "total_steps": 1107, "loss": 0.7316, "learning_rate": 3.4304229124911856e-07, "epoch": 1.8144888287068381, "percentage": 60.52, "elapsed_time": "3:05:58", "remaining_time": "2:01:18"}
{"current_steps": 675, "total_steps": 1107, "loss": 0.704, "learning_rate": 3.362610112549955e-07, "epoch": 1.8280297901150981, "percentage": 60.98, "elapsed_time": "3:07:03", "remaining_time": "1:59:43"}
{"current_steps": 680, "total_steps": 1107, "loss": 0.7167, "learning_rate": 3.295133027945778e-07, "epoch": 1.8415707515233581, "percentage": 61.43, "elapsed_time": "3:08:08", "remaining_time": "1:58:08"}
{"current_steps": 685, "total_steps": 1107, "loss": 0.7094, "learning_rate": 3.228005493558402e-07, "epoch": 1.8551117129316181, "percentage": 61.88, "elapsed_time": "3:09:13", "remaining_time": "1:56:34"}
{"current_steps": 690, "total_steps": 1107, "loss": 0.7312, "learning_rate": 3.1612412725990305e-07, "epoch": 1.8686526743398781, "percentage": 62.33, "elapsed_time": "3:10:18", "remaining_time": "1:55:01"}
{"current_steps": 695, "total_steps": 1107, "loss": 0.7264, "learning_rate": 3.0948540537884185e-07, "epoch": 1.8821936357481381, "percentage": 62.78, "elapsed_time": "3:11:24", "remaining_time": "1:53:28"}
{"current_steps": 700, "total_steps": 1107, "loss": 0.7277, "learning_rate": 3.0288574485502756e-07, "epoch": 1.8957345971563981, "percentage": 63.23, "elapsed_time": "3:12:30", "remaining_time": "1:51:55"}
{"current_steps": 700, "total_steps": 1107, "eval_loss": 0.7811039090156555, "epoch": 1.8957345971563981, "percentage": 63.23, "elapsed_time": "3:15:33", "remaining_time": "1:53:42"}
{"current_steps": 705, "total_steps": 1107, "loss": 0.7287, "learning_rate": 2.9632649882205083e-07, "epoch": 1.9092755585646581, "percentage": 63.69, "elapsed_time": "3:16:39", "remaining_time": "1:52:08"}
{"current_steps": 710, "total_steps": 1107, "loss": 0.7193, "learning_rate": 2.8980901212728723e-07, "epoch": 1.9228165199729181, "percentage": 64.14, "elapsed_time": "3:17:44", "remaining_time": "1:50:34"}
{"current_steps": 715, "total_steps": 1107, "loss": 0.7112, "learning_rate": 2.833346210561619e-07, "epoch": 1.9363574813811781, "percentage": 64.59, "elapsed_time": "3:18:49", "remaining_time": "1:49:00"}
{"current_steps": 720, "total_steps": 1107, "loss": 0.7235, "learning_rate": 2.769046530581708e-07, "epoch": 1.9498984427894381, "percentage": 65.04, "elapsed_time": "3:19:55", "remaining_time": "1:47:27"}
{"current_steps": 725, "total_steps": 1107, "loss": 0.724, "learning_rate": 2.705204264747125e-07, "epoch": 1.9634394041976981, "percentage": 65.49, "elapsed_time": "3:21:00", "remaining_time": "1:45:54"}
{"current_steps": 730, "total_steps": 1107, "loss": 0.7156, "learning_rate": 2.6418325026878665e-07, "epoch": 1.9769803656059581, "percentage": 65.94, "elapsed_time": "3:22:06", "remaining_time": "1:44:22"}
{"current_steps": 735, "total_steps": 1107, "loss": 0.7163, "learning_rate": 2.578944237566174e-07, "epoch": 1.9905213270142181, "percentage": 66.4, "elapsed_time": "3:23:11", "remaining_time": "1:42:50"}
{"current_steps": 740, "total_steps": 1107, "loss": 0.7161, "learning_rate": 2.5165523634125337e-07, "epoch": 2.004062288422478, "percentage": 66.85, "elapsed_time": "3:24:16", "remaining_time": "1:41:18"}
{"current_steps": 745, "total_steps": 1107, "loss": 0.6754, "learning_rate": 2.454669672481996e-07, "epoch": 2.017603249830738, "percentage": 67.3, "elapsed_time": "3:25:22", "remaining_time": "1:39:47"}
{"current_steps": 750, "total_steps": 1107, "loss": 0.6724, "learning_rate": 2.393308852631373e-07, "epoch": 2.031144211238998, "percentage": 67.75, "elapsed_time": "3:26:27", "remaining_time": "1:38:16"}
{"current_steps": 750, "total_steps": 1107, "eval_loss": 0.7857776880264282, "epoch": 2.031144211238998, "percentage": 67.75, "elapsed_time": "3:29:30", "remaining_time": "1:39:43"}
{"current_steps": 755, "total_steps": 1107, "loss": 0.6887, "learning_rate": 2.3324824847178494e-07, "epoch": 2.044685172647258, "percentage": 68.2, "elapsed_time": "3:30:35", "remaining_time": "1:38:10"}
{"current_steps": 760, "total_steps": 1107, "loss": 0.666, "learning_rate": 2.2722030400194975e-07, "epoch": 2.058226134055518, "percentage": 68.65, "elapsed_time": "3:31:40", "remaining_time": "1:36:38"}
{"current_steps": 765, "total_steps": 1107, "loss": 0.6789, "learning_rate": 2.2124828776782955e-07, "epoch": 2.071767095463778, "percentage": 69.11, "elapsed_time": "3:32:46", "remaining_time": "1:35:07"}
{"current_steps": 770, "total_steps": 1107, "loss": 0.6665, "learning_rate": 2.1533342421661228e-07, "epoch": 2.085308056872038, "percentage": 69.56, "elapsed_time": "3:33:51", "remaining_time": "1:33:36"}
{"current_steps": 775, "total_steps": 1107, "loss": 0.6755, "learning_rate": 2.0947692607742618e-07, "epoch": 2.0988490182802977, "percentage": 70.01, "elapsed_time": "3:34:57", "remaining_time": "1:32:05"}
{"current_steps": 780, "total_steps": 1107, "loss": 0.6821, "learning_rate": 2.0367999411269282e-07, "epoch": 2.1123899796885577, "percentage": 70.46, "elapsed_time": "3:36:02", "remaining_time": "1:30:34"}
{"current_steps": 785, "total_steps": 1107, "loss": 0.6805, "learning_rate": 1.9794381687193456e-07, "epoch": 2.1259309410968177, "percentage": 70.91, "elapsed_time": "3:37:08", "remaining_time": "1:29:04"}
{"current_steps": 790, "total_steps": 1107, "loss": 0.6657, "learning_rate": 1.9226957044808494e-07, "epoch": 2.1394719025050777, "percentage": 71.36, "elapsed_time": "3:38:12", "remaining_time": "1:27:33"}
{"current_steps": 795, "total_steps": 1107, "loss": 0.6789, "learning_rate": 1.866584182363528e-07, "epoch": 2.1530128639133377, "percentage": 71.82, "elapsed_time": "3:39:18", "remaining_time": "1:26:04"}
{"current_steps": 800, "total_steps": 1107, "loss": 0.6883, "learning_rate": 1.811115106956918e-07, "epoch": 2.1665538253215977, "percentage": 72.27, "elapsed_time": "3:40:22", "remaining_time": "1:24:34"}
{"current_steps": 800, "total_steps": 1107, "eval_loss": 0.7850033044815063, "epoch": 2.1665538253215977, "percentage": 72.27, "elapsed_time": "3:43:25", "remaining_time": "1:25:44"}
{"current_steps": 805, "total_steps": 1107, "loss": 0.6811, "learning_rate": 1.7562998511291943e-07, "epoch": 2.1800947867298577, "percentage": 72.72, "elapsed_time": "3:44:30", "remaining_time": "1:24:13"}
{"current_steps": 810, "total_steps": 1107, "loss": 0.6766, "learning_rate": 1.702149653695395e-07, "epoch": 2.1936357481381177, "percentage": 73.17, "elapsed_time": "3:45:37", "remaining_time": "1:22:43"}
{"current_steps": 815, "total_steps": 1107, "loss": 0.675, "learning_rate": 1.6486756171131062e-07, "epoch": 2.2071767095463777, "percentage": 73.62, "elapsed_time": "3:46:43", "remaining_time": "1:21:13"}
{"current_steps": 820, "total_steps": 1107, "loss": 0.6678, "learning_rate": 1.595888705206128e-07, "epoch": 2.2207176709546377, "percentage": 74.07, "elapsed_time": "3:47:48", "remaining_time": "1:19:43"}
{"current_steps": 825, "total_steps": 1107, "loss": 0.6733, "learning_rate": 1.5437997409165476e-07, "epoch": 2.2342586323628977, "percentage": 74.53, "elapsed_time": "3:48:53", "remaining_time": "1:18:14"}
{"current_steps": 830, "total_steps": 1107, "loss": 0.6794, "learning_rate": 1.4924194040856973e-07, "epoch": 2.2477995937711577, "percentage": 74.98, "elapsed_time": "3:49:59", "remaining_time": "1:16:45"}
{"current_steps": 835, "total_steps": 1107, "loss": 0.6871, "learning_rate": 1.4417582292644691e-07, "epoch": 2.2613405551794177, "percentage": 75.43, "elapsed_time": "3:51:04", "remaining_time": "1:15:16"}
{"current_steps": 840, "total_steps": 1107, "loss": 0.6774, "learning_rate": 1.3918266035534027e-07, "epoch": 2.2748815165876777, "percentage": 75.88, "elapsed_time": "3:52:10", "remaining_time": "1:13:47"}
{"current_steps": 845, "total_steps": 1107, "loss": 0.6816, "learning_rate": 1.3426347644730047e-07, "epoch": 2.2884224779959377, "percentage": 76.33, "elapsed_time": "3:53:15", "remaining_time": "1:12:19"}
{"current_steps": 850, "total_steps": 1107, "loss": 0.6709, "learning_rate": 1.2941927978647526e-07, "epoch": 2.3019634394041977, "percentage": 76.78, "elapsed_time": "3:54:20", "remaining_time": "1:10:51"}
{"current_steps": 850, "total_steps": 1107, "eval_loss": 0.7840232253074646, "epoch": 2.3019634394041977, "percentage": 76.78, "elapsed_time": "3:57:23", "remaining_time": "1:11:46"}
{"current_steps": 855, "total_steps": 1107, "loss": 0.6765, "learning_rate": 1.2465106358231753e-07, "epoch": 2.3155044008124577, "percentage": 77.24, "elapsed_time": "3:58:28", "remaining_time": "1:10:17"}
{"current_steps": 860, "total_steps": 1107, "loss": 0.6633, "learning_rate": 1.1995980546594775e-07, "epoch": 2.3290453622207177, "percentage": 77.69, "elapsed_time": "3:59:34", "remaining_time": "1:08:48"}
{"current_steps": 865, "total_steps": 1107, "loss": 0.678, "learning_rate": 1.153464672897091e-07, "epoch": 2.3425863236289777, "percentage": 78.14, "elapsed_time": "4:00:39", "remaining_time": "1:07:19"}
{"current_steps": 870, "total_steps": 1107, "loss": 0.6875, "learning_rate": 1.108119949299578e-07, "epoch": 2.3561272850372377, "percentage": 78.59, "elapsed_time": "4:01:45", "remaining_time": "1:05:51"}
{"current_steps": 875, "total_steps": 1107, "loss": 0.6955, "learning_rate": 1.0635731809312992e-07, "epoch": 2.3696682464454977, "percentage": 79.04, "elapsed_time": "4:02:50", "remaining_time": "1:04:23"}
{"current_steps": 880, "total_steps": 1107, "loss": 0.6843, "learning_rate": 1.0198335012512271e-07, "epoch": 2.3832092078537577, "percentage": 79.49, "elapsed_time": "4:03:56", "remaining_time": "1:02:55"}
{"current_steps": 885, "total_steps": 1107, "loss": 0.7081, "learning_rate": 9.769098782403041e-08, "epoch": 2.3967501692620177, "percentage": 79.95, "elapsed_time": "4:05:01", "remaining_time": "1:01:27"}
{"current_steps": 890, "total_steps": 1107, "loss": 0.6758, "learning_rate": 9.348111125627278e-08, "epoch": 2.4102911306702777, "percentage": 80.4, "elapsed_time": "4:06:06", "remaining_time": "1:00:00"}
{"current_steps": 895, "total_steps": 1107, "loss": 0.6718, "learning_rate": 8.935458357615583e-08, "epoch": 2.4238320920785377, "percentage": 80.85, "elapsed_time": "4:07:11", "remaining_time": "0:58:33"}
{"current_steps": 900, "total_steps": 1107, "loss": 0.6598, "learning_rate": 8.531225084889654e-08, "epoch": 2.4373730534867977, "percentage": 81.3, "elapsed_time": "4:08:17", "remaining_time": "0:57:06"}
{"current_steps": 900, "total_steps": 1107, "eval_loss": 0.7834283113479614, "epoch": 2.4373730534867977, "percentage": 81.3, "elapsed_time": "4:11:20", "remaining_time": "0:57:48"}
{"current_steps": 905, "total_steps": 1107, "loss": 0.6603, "learning_rate": 8.135494187715475e-08, "epoch": 2.4509140148950577, "percentage": 81.75, "elapsed_time": "4:12:26", "remaining_time": "0:56:20"}
{"current_steps": 910, "total_steps": 1107, "loss": 0.6832, "learning_rate": 7.748346803110295e-08, "epoch": 2.4644549763033177, "percentage": 82.2, "elapsed_time": "4:13:32", "remaining_time": "0:54:53"}
{"current_steps": 915, "total_steps": 1107, "loss": 0.6583, "learning_rate": 7.369862308207025e-08, "epoch": 2.4779959377115777, "percentage": 82.66, "elapsed_time": "4:14:37", "remaining_time": "0:53:25"}
{"current_steps": 920, "total_steps": 1107, "loss": 0.6808, "learning_rate": 7.000118303979463e-08, "epoch": 2.4915368991198377, "percentage": 83.11, "elapsed_time": "4:15:43", "remaining_time": "0:51:58"}
{"current_steps": 925, "total_steps": 1107, "loss": 0.6762, "learning_rate": 6.639190599331746e-08, "epoch": 2.5050778605280977, "percentage": 83.56, "elapsed_time": "4:16:48", "remaining_time": "0:50:31"}
{"current_steps": 930, "total_steps": 1107, "loss": 0.6663, "learning_rate": 6.287153195555173e-08, "epoch": 2.518618821936357, "percentage": 84.01, "elapsed_time": "4:17:54", "remaining_time": "0:49:05"}
{"current_steps": 935, "total_steps": 1107, "loss": 0.6648, "learning_rate": 5.944078271155639e-08, "epoch": 2.5321597833446177, "percentage": 84.46, "elapsed_time": "4:19:00", "remaining_time": "0:47:38"}
{"current_steps": 940, "total_steps": 1107, "loss": 0.6596, "learning_rate": 5.610036167054838e-08, "epoch": 2.545700744752877, "percentage": 84.91, "elapsed_time": "4:20:06", "remaining_time": "0:46:12"}
{"current_steps": 945, "total_steps": 1107, "loss": 0.669, "learning_rate": 5.2850953721682635e-08, "epoch": 2.5592417061611377, "percentage": 85.37, "elapsed_time": "4:21:12", "remaining_time": "0:44:46"}
{"current_steps": 950, "total_steps": 1107, "loss": 0.674, "learning_rate": 4.969322509362761e-08, "epoch": 2.572782667569397, "percentage": 85.82, "elapsed_time": "4:22:17", "remaining_time": "0:43:20"}
{"current_steps": 950, "total_steps": 1107, "eval_loss": 0.7830283641815186, "epoch": 2.572782667569397, "percentage": 85.82, "elapsed_time": "4:25:20", "remaining_time": "0:43:51"}
{"current_steps": 955, "total_steps": 1107, "loss": 0.6713, "learning_rate": 4.662782321796849e-08, "epoch": 2.5863236289776577, "percentage": 86.27, "elapsed_time": "4:26:25", "remaining_time": "0:42:24"}
{"current_steps": 960, "total_steps": 1107, "loss": 0.6747, "learning_rate": 4.365537659646418e-08, "epoch": 2.599864590385917, "percentage": 86.72, "elapsed_time": "4:27:30", "remaining_time": "0:40:57"}
{"current_steps": 965, "total_steps": 1107, "loss": 0.6846, "learning_rate": 4.0776494672184356e-08, "epoch": 2.6134055517941777, "percentage": 87.17, "elapsed_time": "4:28:36", "remaining_time": "0:39:31"}
{"current_steps": 970, "total_steps": 1107, "loss": 0.6616, "learning_rate": 3.799176770455526e-08, "epoch": 2.626946513202437, "percentage": 87.62, "elapsed_time": "4:29:42", "remaining_time": "0:38:05"}
{"current_steps": 975, "total_steps": 1107, "loss": 0.675, "learning_rate": 3.530176664833834e-08, "epoch": 2.640487474610697, "percentage": 88.08, "elapsed_time": "4:30:48", "remaining_time": "0:36:39"}
{"current_steps": 980, "total_steps": 1107, "loss": 0.6875, "learning_rate": 3.270704303656696e-08, "epoch": 2.654028436018957, "percentage": 88.53, "elapsed_time": "4:31:53", "remaining_time": "0:35:14"}
{"current_steps": 985, "total_steps": 1107, "loss": 0.6808, "learning_rate": 3.020812886746477e-08, "epoch": 2.667569397427217, "percentage": 88.98, "elapsed_time": "4:32:58", "remaining_time": "0:33:48"}
{"current_steps": 990, "total_steps": 1107, "loss": 0.6687, "learning_rate": 2.7805536495370373e-08, "epoch": 2.681110358835477, "percentage": 89.43, "elapsed_time": "4:34:03", "remaining_time": "0:32:23"}
{"current_steps": 995, "total_steps": 1107, "loss": 0.6584, "learning_rate": 2.5499758525688197e-08, "epoch": 2.694651320243737, "percentage": 89.88, "elapsed_time": "4:35:09", "remaining_time": "0:30:58"}
{"current_steps": 1000, "total_steps": 1107, "loss": 0.656, "learning_rate": 2.329126771388995e-08, "epoch": 2.708192281651997, "percentage": 90.33, "elapsed_time": "4:36:14", "remaining_time": "0:29:33"}
{"current_steps": 1000, "total_steps": 1107, "eval_loss": 0.7828182578086853, "epoch": 2.708192281651997, "percentage": 90.33, "elapsed_time": "4:39:17", "remaining_time": "0:29:53"}
{"current_steps": 1005, "total_steps": 1107, "loss": 0.6716, "learning_rate": 2.1180516868584464e-08, "epoch": 2.721733243060257, "percentage": 90.79, "elapsed_time": "4:40:22", "remaining_time": "0:28:27"}
{"current_steps": 1010, "total_steps": 1107, "loss": 0.6822, "learning_rate": 1.916793875867839e-08, "epoch": 2.735274204468517, "percentage": 91.24, "elapsed_time": "4:41:27", "remaining_time": "0:27:01"}
{"current_steps": 1015, "total_steps": 1107, "loss": 0.6627, "learning_rate": 1.7253946024645472e-08, "epoch": 2.748815165876777, "percentage": 91.69, "elapsed_time": "4:42:32", "remaining_time": "0:25:36"}
{"current_steps": 1020, "total_steps": 1107, "loss": 0.6727, "learning_rate": 1.5438931093921804e-08, "epoch": 2.762356127285037, "percentage": 92.14, "elapsed_time": "4:43:37", "remaining_time": "0:24:11"}
{"current_steps": 1025, "total_steps": 1107, "loss": 0.6618, "learning_rate": 1.372326610044705e-08, "epoch": 2.775897088693297, "percentage": 92.59, "elapsed_time": "4:44:43", "remaining_time": "0:22:46"}
{"current_steps": 1030, "total_steps": 1107, "loss": 0.6614, "learning_rate": 1.2107302808364638e-08, "epoch": 2.789438050101557, "percentage": 93.04, "elapsed_time": "4:45:48", "remaining_time": "0:21:21"}
{"current_steps": 1035, "total_steps": 1107, "loss": 0.6665, "learning_rate": 1.0591372539900056e-08, "epoch": 2.802979011509817, "percentage": 93.5, "elapsed_time": "4:46:54", "remaining_time": "0:19:57"}
{"current_steps": 1040, "total_steps": 1107, "loss": 0.6643, "learning_rate": 9.175786107429085e-09, "epoch": 2.816519972918077, "percentage": 93.95, "elapsed_time": "4:47:59", "remaining_time": "0:18:33"}
{"current_steps": 1045, "total_steps": 1107, "loss": 0.6739, "learning_rate": 7.860833749751772e-09, "epoch": 2.830060934326337, "percentage": 94.4, "elapsed_time": "4:49:05", "remaining_time": "0:17:09"}
{"current_steps": 1050, "total_steps": 1107, "loss": 0.6741, "learning_rate": 6.6467850725848705e-09, "epoch": 2.843601895734597, "percentage": 94.85, "elapsed_time": "4:50:10", "remaining_time": "0:15:45"}
{"current_steps": 1050, "total_steps": 1107, "eval_loss": 0.7824584245681763, "epoch": 2.843601895734597, "percentage": 94.85, "elapsed_time": "4:53:13", "remaining_time": "0:15:55"}
{"current_steps": 1055, "total_steps": 1107, "loss": 0.6842, "learning_rate": 5.5338889932838306e-09, "epoch": 2.857142857142857, "percentage": 95.3, "elapsed_time": "4:54:19", "remaining_time": "0:14:30"}
{"current_steps": 1060, "total_steps": 1107, "loss": 0.6806, "learning_rate": 4.5223736898076235e-09, "epoch": 2.870683818551117, "percentage": 95.75, "elapsed_time": "4:55:24", "remaining_time": "0:13:05"}
{"current_steps": 1065, "total_steps": 1107, "loss": 0.6679, "learning_rate": 3.612446553934723e-09, "epoch": 2.884224779959377, "percentage": 96.21, "elapsed_time": "4:56:30", "remaining_time": "0:11:41"}
{"current_steps": 1070, "total_steps": 1107, "loss": 0.6733, "learning_rate": 2.804294148741948e-09, "epoch": 2.897765741367637, "percentage": 96.66, "elapsed_time": "4:57:35", "remaining_time": "0:10:17"}
{"current_steps": 1075, "total_steps": 1107, "loss": 0.6736, "learning_rate": 2.0980821703527886e-09, "epoch": 2.911306702775897, "percentage": 97.11, "elapsed_time": "4:58:40", "remaining_time": "0:08:53"}
{"current_steps": 1080, "total_steps": 1107, "loss": 0.6649, "learning_rate": 1.4939554139648536e-09, "epoch": 2.924847664184157, "percentage": 97.56, "elapsed_time": "4:59:46", "remaining_time": "0:07:29"}
{"current_steps": 1085, "total_steps": 1107, "loss": 0.6718, "learning_rate": 9.920377441623994e-10, "epoch": 2.938388625592417, "percentage": 98.01, "elapsed_time": "5:00:51", "remaining_time": "0:06:06"}
{"current_steps": 1090, "total_steps": 1107, "loss": 0.6805, "learning_rate": 5.92432069520199e-10, "epoch": 2.951929587000677, "percentage": 98.46, "elapsed_time": "5:01:57", "remaining_time": "0:04:42"}
{"current_steps": 1095, "total_steps": 1107, "loss": 0.6629, "learning_rate": 2.9522032150419705e-10, "epoch": 2.9654705484089368, "percentage": 98.92, "elapsed_time": "5:03:02", "remaining_time": "0:03:19"}
{"current_steps": 1100, "total_steps": 1107, "loss": 0.6592, "learning_rate": 1.0046343767294852e-10, "epoch": 2.979011509817197, "percentage": 99.37, "elapsed_time": "5:04:08", "remaining_time": "0:01:56"}
{"current_steps": 1100, "total_steps": 1107, "eval_loss": 0.7824262976646423, "epoch": 2.979011509817197, "percentage": 99.37, "elapsed_time": "5:07:11", "remaining_time": "0:01:57"}
{"current_steps": 1105, "total_steps": 1107, "loss": 0.6534, "learning_rate": 8.201349183611927e-12, "epoch": 2.9925524712254568, "percentage": 99.82, "elapsed_time": "5:08:16", "remaining_time": "0:00:33"}
{"current_steps": 1107, "total_steps": 1107, "epoch": 2.997968855788761, "percentage": 100.0, "elapsed_time": "5:09:15", "remaining_time": "0:00:00"}