{"current_steps": 5, "total_steps": 441, "loss": 1.7543, "learning_rate": 5e-07, "epoch": 0.0338409475465313, "percentage": 1.13, "elapsed_time": "0:01:09", "remaining_time": "1:40:18"} {"current_steps": 10, "total_steps": 441, "loss": 1.5921, "learning_rate": 1e-06, "epoch": 0.0676818950930626, "percentage": 2.27, "elapsed_time": "0:02:14", "remaining_time": "1:36:46"} {"current_steps": 15, "total_steps": 441, "loss": 1.2895, "learning_rate": 9.996679701338661e-07, "epoch": 0.10152284263959391, "percentage": 3.4, "elapsed_time": "0:03:20", "remaining_time": "1:35:02"} {"current_steps": 20, "total_steps": 441, "loss": 1.135, "learning_rate": 9.986723215107924e-07, "epoch": 0.1353637901861252, "percentage": 4.54, "elapsed_time": "0:04:25", "remaining_time": "1:33:16"} {"current_steps": 25, "total_steps": 441, "loss": 1.0651, "learning_rate": 9.97014376471095e-07, "epoch": 0.1692047377326565, "percentage": 5.67, "elapsed_time": "0:05:30", "remaining_time": "1:31:39"} {"current_steps": 30, "total_steps": 441, "loss": 1.0038, "learning_rate": 9.946963369638524e-07, "epoch": 0.20304568527918782, "percentage": 6.8, "elapsed_time": "0:06:35", "remaining_time": "1:30:22"} {"current_steps": 35, "total_steps": 441, "loss": 0.9911, "learning_rate": 9.917212816224536e-07, "epoch": 0.23688663282571912, "percentage": 7.94, "elapsed_time": "0:07:41", "remaining_time": "1:29:12"} {"current_steps": 40, "total_steps": 441, "loss": 0.9617, "learning_rate": 9.880931616758056e-07, "epoch": 0.2707275803722504, "percentage": 9.07, "elapsed_time": "0:08:47", "remaining_time": "1:28:08"} {"current_steps": 45, "total_steps": 441, "loss": 0.955, "learning_rate": 9.838167957006293e-07, "epoch": 0.30456852791878175, "percentage": 10.2, "elapsed_time": "0:09:52", "remaining_time": "1:26:51"} {"current_steps": 50, "total_steps": 441, "loss": 0.9458, "learning_rate": 9.788978632218138e-07, "epoch": 0.338409475465313, "percentage": 11.34, "elapsed_time": "0:10:57", "remaining_time": "1:25:41"} {"current_steps": 50, "total_steps": 441, "eval_loss": 0.9426366686820984, "epoch": 0.338409475465313, "percentage": 11.34, "elapsed_time": "0:12:10", "remaining_time": "1:35:12"} {"current_steps": 55, "total_steps": 441, "loss": 0.943, "learning_rate": 9.73342897169329e-07, "epoch": 0.37225042301184436, "percentage": 12.47, "elapsed_time": "0:13:16", "remaining_time": "1:33:08"} {"current_steps": 60, "total_steps": 441, "loss": 0.9093, "learning_rate": 9.671592752017137e-07, "epoch": 0.40609137055837563, "percentage": 13.61, "elapsed_time": "0:14:21", "remaining_time": "1:31:09"} {"current_steps": 65, "total_steps": 441, "loss": 0.9195, "learning_rate": 9.603552099076648e-07, "epoch": 0.43993231810490696, "percentage": 14.74, "elapsed_time": "0:15:27", "remaining_time": "1:29:22"} {"current_steps": 70, "total_steps": 441, "loss": 0.886, "learning_rate": 9.52939737898737e-07, "epoch": 0.47377326565143824, "percentage": 15.87, "elapsed_time": "0:16:32", "remaining_time": "1:27:42"} {"current_steps": 75, "total_steps": 441, "loss": 0.9185, "learning_rate": 9.449227078076443e-07, "epoch": 0.5076142131979695, "percentage": 17.01, "elapsed_time": "0:17:38", "remaining_time": "1:26:04"} {"current_steps": 80, "total_steps": 441, "loss": 0.8983, "learning_rate": 9.363147672080985e-07, "epoch": 0.5414551607445008, "percentage": 18.14, "elapsed_time": "0:18:43", "remaining_time": "1:24:28"} {"current_steps": 85, "total_steps": 441, "loss": 0.8843, "learning_rate": 9.271273484735592e-07, "epoch": 0.5752961082910322, "percentage": 19.27, "elapsed_time": "0:19:48", "remaining_time": "1:22:56"} {"current_steps": 90, "total_steps": 441, "loss": 0.8844, "learning_rate": 9.173726535936766e-07, "epoch": 0.6091370558375635, "percentage": 20.41, "elapsed_time": "0:20:54", "remaining_time": "1:21:31"} {"current_steps": 95, "total_steps": 441, "loss": 0.8994, "learning_rate": 9.070636379685915e-07, "epoch": 0.6429780033840947, "percentage": 21.54, "elapsed_time": "0:21:59", "remaining_time": "1:20:05"} {"current_steps": 100, "total_steps": 441, "loss": 0.8779, "learning_rate": 8.962139932026156e-07, "epoch": 0.676818950930626, "percentage": 22.68, "elapsed_time": "0:23:05", "remaining_time": "1:18:45"} {"current_steps": 100, "total_steps": 441, "eval_loss": 0.887722373008728, "epoch": 0.676818950930626, "percentage": 22.68, "elapsed_time": "0:24:18", "remaining_time": "1:22:53"} {"current_steps": 105, "total_steps": 441, "loss": 0.864, "learning_rate": 8.848381289201459e-07, "epoch": 0.7106598984771574, "percentage": 23.81, "elapsed_time": "0:25:24", "remaining_time": "1:21:17"} {"current_steps": 110, "total_steps": 441, "loss": 0.8795, "learning_rate": 8.72951153627962e-07, "epoch": 0.7445008460236887, "percentage": 24.94, "elapsed_time": "0:26:29", "remaining_time": "1:19:42"} {"current_steps": 115, "total_steps": 441, "loss": 0.8657, "learning_rate": 8.605688546493238e-07, "epoch": 0.7783417935702199, "percentage": 26.08, "elapsed_time": "0:27:34", "remaining_time": "1:18:09"} {"current_steps": 120, "total_steps": 441, "loss": 0.8627, "learning_rate": 8.477076771565202e-07, "epoch": 0.8121827411167513, "percentage": 27.21, "elapsed_time": "0:28:39", "remaining_time": "1:16:40"} {"current_steps": 125, "total_steps": 441, "loss": 0.8695, "learning_rate": 8.343847023297169e-07, "epoch": 0.8460236886632826, "percentage": 28.34, "elapsed_time": "0:29:45", "remaining_time": "1:15:13"} {"current_steps": 130, "total_steps": 441, "loss": 0.8429, "learning_rate": 8.206176246711065e-07, "epoch": 0.8798646362098139, "percentage": 29.48, "elapsed_time": "0:30:51", "remaining_time": "1:13:48"} {"current_steps": 135, "total_steps": 441, "loss": 0.8603, "learning_rate": 8.064247285044972e-07, "epoch": 0.9137055837563451, "percentage": 30.61, "elapsed_time": "0:31:56", "remaining_time": "1:12:23"} {"current_steps": 140, "total_steps": 441, "loss": 0.8622, "learning_rate": 7.918248636915459e-07, "epoch": 0.9475465313028765, "percentage": 31.75, "elapsed_time": "0:33:02", "remaining_time": "1:11:01"} {"current_steps": 145, "total_steps": 441, "loss": 0.8473, "learning_rate": 7.768374205968906e-07, "epoch": 0.9813874788494078, "percentage": 32.88, "elapsed_time": "0:34:07", "remaining_time": "1:09:39"} {"current_steps": 150, "total_steps": 441, "loss": 0.82, "learning_rate": 7.614823043354285e-07, "epoch": 1.015228426395939, "percentage": 34.01, "elapsed_time": "0:35:13", "remaining_time": "1:08:19"} {"current_steps": 150, "total_steps": 441, "eval_loss": 0.8625058531761169, "epoch": 1.015228426395939, "percentage": 34.01, "elapsed_time": "0:36:25", "remaining_time": "1:10:40"} {"current_steps": 155, "total_steps": 441, "loss": 0.823, "learning_rate": 7.457799083359471e-07, "epoch": 1.0490693739424704, "percentage": 35.15, "elapsed_time": "0:37:30", "remaining_time": "1:09:13"} {"current_steps": 160, "total_steps": 441, "loss": 0.7903, "learning_rate": 7.297510872562131e-07, "epoch": 1.0829103214890017, "percentage": 36.28, "elapsed_time": "0:38:36", "remaining_time": "1:07:49"} {"current_steps": 165, "total_steps": 441, "loss": 0.7844, "learning_rate": 7.134171292854955e-07, "epoch": 1.116751269035533, "percentage": 37.41, "elapsed_time": "0:39:42", "remaining_time": "1:06:24"} {"current_steps": 170, "total_steps": 441, "loss": 0.7888, "learning_rate": 6.967997278713089e-07, "epoch": 1.1505922165820643, "percentage": 38.55, "elapsed_time": "0:40:47", "remaining_time": "1:05:01"} {"current_steps": 175, "total_steps": 441, "loss": 0.7968, "learning_rate": 6.79920952907921e-07, "epoch": 1.1844331641285957, "percentage": 39.68, "elapsed_time": "0:41:53", "remaining_time": "1:03:39"} {"current_steps": 180, "total_steps": 441, "loss": 0.7823, "learning_rate": 6.628032214248982e-07, "epoch": 1.218274111675127, "percentage": 40.82, "elapsed_time": "0:42:58", "remaining_time": "1:02:19"} {"current_steps": 185, "total_steps": 441, "loss": 0.7848, "learning_rate": 6.454692678146119e-07, "epoch": 1.252115059221658, "percentage": 41.95, "elapsed_time": "0:44:04", "remaining_time": "1:00:59"} {"current_steps": 190, "total_steps": 441, "loss": 0.7683, "learning_rate": 6.279421136382494e-07, "epoch": 1.2859560067681894, "percentage": 43.08, "elapsed_time": "0:45:10", "remaining_time": "0:59:40"} {"current_steps": 195, "total_steps": 441, "loss": 0.7776, "learning_rate": 6.102450370504299e-07, "epoch": 1.3197969543147208, "percentage": 44.22, "elapsed_time": "0:46:16", "remaining_time": "0:58:22"} {"current_steps": 200, "total_steps": 441, "loss": 0.7763, "learning_rate": 5.924015418830354e-07, "epoch": 1.353637901861252, "percentage": 45.35, "elapsed_time": "0:47:21", "remaining_time": "0:57:04"} {"current_steps": 200, "total_steps": 441, "eval_loss": 0.8517683148384094, "epoch": 1.353637901861252, "percentage": 45.35, "elapsed_time": "0:48:34", "remaining_time": "0:58:31"} {"current_steps": 205, "total_steps": 441, "loss": 0.7586, "learning_rate": 5.74435326429313e-07, "epoch": 1.3874788494077834, "percentage": 46.49, "elapsed_time": "0:49:40", "remaining_time": "0:57:10"} {"current_steps": 210, "total_steps": 441, "loss": 0.7693, "learning_rate": 5.563702519697108e-07, "epoch": 1.4213197969543148, "percentage": 47.62, "elapsed_time": "0:50:46", "remaining_time": "0:55:50"} {"current_steps": 215, "total_steps": 441, "loss": 0.7784, "learning_rate": 5.382303110812466e-07, "epoch": 1.455160744500846, "percentage": 48.75, "elapsed_time": "0:51:52", "remaining_time": "0:54:31"} {"current_steps": 220, "total_steps": 441, "loss": 0.7789, "learning_rate": 5.200395957725005e-07, "epoch": 1.4890016920473772, "percentage": 49.89, "elapsed_time": "0:52:57", "remaining_time": "0:53:11"} {"current_steps": 225, "total_steps": 441, "loss": 0.7692, "learning_rate": 5.018222654865471e-07, "epoch": 1.5228426395939088, "percentage": 51.02, "elapsed_time": "0:54:02", "remaining_time": "0:51:53"} {"current_steps": 230, "total_steps": 441, "loss": 0.7954, "learning_rate": 4.836025150143318e-07, "epoch": 1.5566835871404399, "percentage": 52.15, "elapsed_time": "0:55:08", "remaining_time": "0:50:34"} {"current_steps": 235, "total_steps": 441, "loss": 0.7882, "learning_rate": 4.654045423610952e-07, "epoch": 1.5905245346869712, "percentage": 53.29, "elapsed_time": "0:56:13", "remaining_time": "0:49:17"} {"current_steps": 240, "total_steps": 441, "loss": 0.7782, "learning_rate": 4.4725251660853357e-07, "epoch": 1.6243654822335025, "percentage": 54.42, "elapsed_time": "0:57:19", "remaining_time": "0:48:00"} {"current_steps": 245, "total_steps": 441, "loss": 0.7709, "learning_rate": 4.2917054581536926e-07, "epoch": 1.6582064297800339, "percentage": 55.56, "elapsed_time": "0:58:24", "remaining_time": "0:46:43"} {"current_steps": 250, "total_steps": 441, "loss": 0.7719, "learning_rate": 4.1118264499897003e-07, "epoch": 1.6920473773265652, "percentage": 56.69, "elapsed_time": "0:59:29", "remaining_time": "0:45:27"} {"current_steps": 250, "total_steps": 441, "eval_loss": 0.8421301245689392, "epoch": 1.6920473773265652, "percentage": 56.69, "elapsed_time": "1:00:42", "remaining_time": "0:46:22"} {"current_steps": 255, "total_steps": 441, "loss": 0.7599, "learning_rate": 3.9331270424053616e-07, "epoch": 1.7258883248730963, "percentage": 57.82, "elapsed_time": "1:01:46", "remaining_time": "0:45:03"} {"current_steps": 260, "total_steps": 441, "loss": 0.7727, "learning_rate": 3.755844569562191e-07, "epoch": 1.7597292724196278, "percentage": 58.96, "elapsed_time": "1:02:52", "remaining_time": "0:43:45"} {"current_steps": 265, "total_steps": 441, "loss": 0.7709, "learning_rate": 3.580214483763093e-07, "epoch": 1.793570219966159, "percentage": 60.09, "elapsed_time": "1:03:57", "remaining_time": "0:42:28"} {"current_steps": 270, "total_steps": 441, "loss": 0.782, "learning_rate": 3.406470042743574e-07, "epoch": 1.8274111675126905, "percentage": 61.22, "elapsed_time": "1:05:03", "remaining_time": "0:41:11"} {"current_steps": 275, "total_steps": 441, "loss": 0.7793, "learning_rate": 3.23484199987761e-07, "epoch": 1.8612521150592216, "percentage": 62.36, "elapsed_time": "1:06:09", "remaining_time": "0:39:55"} {"current_steps": 280, "total_steps": 441, "loss": 0.7623, "learning_rate": 3.065558297709588e-07, "epoch": 1.895093062605753, "percentage": 63.49, "elapsed_time": "1:07:14", "remaining_time": "0:38:39"} {"current_steps": 285, "total_steps": 441, "loss": 0.7628, "learning_rate": 2.898843765219388e-07, "epoch": 1.9289340101522843, "percentage": 64.63, "elapsed_time": "1:08:20", "remaining_time": "0:37:24"} {"current_steps": 290, "total_steps": 441, "loss": 0.7584, "learning_rate": 2.7349198192226295e-07, "epoch": 1.9627749576988156, "percentage": 65.76, "elapsed_time": "1:09:25", "remaining_time": "0:36:09"} {"current_steps": 295, "total_steps": 441, "loss": 0.7645, "learning_rate": 2.574004170302696e-07, "epoch": 1.996615905245347, "percentage": 66.89, "elapsed_time": "1:10:31", "remaining_time": "0:34:54"} {"current_steps": 300, "total_steps": 441, "loss": 0.7347, "learning_rate": 2.4163105336650643e-07, "epoch": 2.030456852791878, "percentage": 68.03, "elapsed_time": "1:11:36", "remaining_time": "0:33:39"} {"current_steps": 300, "total_steps": 441, "eval_loss": 0.8380723595619202, "epoch": 2.030456852791878, "percentage": 68.03, "elapsed_time": "1:12:48", "remaining_time": "0:34:13"} {"current_steps": 305, "total_steps": 441, "loss": 0.7348, "learning_rate": 2.2620483452979887e-07, "epoch": 2.0642978003384096, "percentage": 69.16, "elapsed_time": "1:13:54", "remaining_time": "0:32:57"} {"current_steps": 310, "total_steps": 441, "loss": 0.7193, "learning_rate": 2.1114224838164806e-07, "epoch": 2.0981387478849407, "percentage": 70.29, "elapsed_time": "1:14:59", "remaining_time": "0:31:41"} {"current_steps": 315, "total_steps": 441, "loss": 0.7286, "learning_rate": 1.964632998359036e-07, "epoch": 2.1319796954314723, "percentage": 71.43, "elapsed_time": "1:16:04", "remaining_time": "0:30:25"} {"current_steps": 320, "total_steps": 441, "loss": 0.7024, "learning_rate": 1.8218748428984782e-07, "epoch": 2.1658206429780034, "percentage": 72.56, "elapsed_time": "1:17:09", "remaining_time": "0:29:10"} {"current_steps": 325, "total_steps": 441, "loss": 0.7084, "learning_rate": 1.6833376173198005e-07, "epoch": 2.199661590524535, "percentage": 73.7, "elapsed_time": "1:18:15", "remaining_time": "0:27:55"} {"current_steps": 330, "total_steps": 441, "loss": 0.7088, "learning_rate": 1.5492053156088498e-07, "epoch": 2.233502538071066, "percentage": 74.83, "elapsed_time": "1:19:20", "remaining_time": "0:26:41"} {"current_steps": 335, "total_steps": 441, "loss": 0.7244, "learning_rate": 1.4196560814863567e-07, "epoch": 2.267343485617597, "percentage": 75.96, "elapsed_time": "1:20:25", "remaining_time": "0:25:26"} {"current_steps": 340, "total_steps": 441, "loss": 0.7261, "learning_rate": 1.294861971811773e-07, "epoch": 2.3011844331641287, "percentage": 77.1, "elapsed_time": "1:21:31", "remaining_time": "0:24:13"} {"current_steps": 345, "total_steps": 441, "loss": 0.7193, "learning_rate": 1.1749887280712161e-07, "epoch": 2.33502538071066, "percentage": 78.23, "elapsed_time": "1:22:38", "remaining_time": "0:22:59"} {"current_steps": 350, "total_steps": 441, "loss": 0.7232, "learning_rate": 1.0601955562529774e-07, "epoch": 2.3688663282571913, "percentage": 79.37, "elapsed_time": "1:23:43", "remaining_time": "0:21:46"} {"current_steps": 350, "total_steps": 441, "eval_loss": 0.84018474817276, "epoch": 2.3688663282571913, "percentage": 79.37, "elapsed_time": "1:24:56", "remaining_time": "0:22:05"} {"current_steps": 355, "total_steps": 441, "loss": 0.7072, "learning_rate": 9.506349154029425e-08, "epoch": 2.4027072758037225, "percentage": 80.5, "elapsed_time": "1:26:02", "remaining_time": "0:20:50"} {"current_steps": 360, "total_steps": 441, "loss": 0.724, "learning_rate": 8.46452315140772e-08, "epoch": 2.436548223350254, "percentage": 81.63, "elapsed_time": "1:27:07", "remaining_time": "0:19:36"} {"current_steps": 365, "total_steps": 441, "loss": 0.726, "learning_rate": 7.477861224057403e-08, "epoch": 2.470389170896785, "percentage": 82.77, "elapsed_time": "1:28:12", "remaining_time": "0:18:21"} {"current_steps": 370, "total_steps": 441, "loss": 0.7152, "learning_rate": 6.547673776889095e-08, "epoch": 2.504230118443316, "percentage": 83.9, "elapsed_time": "1:29:17", "remaining_time": "0:17:08"} {"current_steps": 375, "total_steps": 441, "loss": 0.7222, "learning_rate": 5.6751962099570396e-08, "epoch": 2.5380710659898478, "percentage": 85.03, "elapsed_time": "1:30:22", "remaining_time": "0:15:54"} {"current_steps": 380, "total_steps": 441, "loss": 0.7141, "learning_rate": 4.861587277700274e-08, "epoch": 2.571912013536379, "percentage": 86.17, "elapsed_time": "1:31:28", "remaining_time": "0:14:41"} {"current_steps": 385, "total_steps": 441, "loss": 0.7075, "learning_rate": 4.107927549978235e-08, "epoch": 2.6057529610829104, "percentage": 87.3, "elapsed_time": "1:32:33", "remaining_time": "0:13:27"} {"current_steps": 390, "total_steps": 441, "loss": 0.7171, "learning_rate": 3.4152179769449396e-08, "epoch": 2.6395939086294415, "percentage": 88.44, "elapsed_time": "1:33:39", "remaining_time": "0:12:14"} {"current_steps": 395, "total_steps": 441, "loss": 0.7198, "learning_rate": 2.784378559667622e-08, "epoch": 2.673434856175973, "percentage": 89.57, "elapsed_time": "1:34:45", "remaining_time": "0:11:02"} {"current_steps": 400, "total_steps": 441, "loss": 0.721, "learning_rate": 2.2162471282553553e-08, "epoch": 2.707275803722504, "percentage": 90.7, "elapsed_time": "1:35:51", "remaining_time": "0:09:49"} {"current_steps": 400, "total_steps": 441, "eval_loss": 0.8391405940055847, "epoch": 2.707275803722504, "percentage": 90.7, "elapsed_time": "1:37:04", "remaining_time": "0:09:56"} {"current_steps": 405, "total_steps": 441, "loss": 0.7091, "learning_rate": 1.7115782291206082e-08, "epoch": 2.7411167512690353, "percentage": 91.84, "elapsed_time": "1:38:09", "remaining_time": "0:08:43"} {"current_steps": 410, "total_steps": 441, "loss": 0.7247, "learning_rate": 1.2710421228514733e-08, "epoch": 2.774957698815567, "percentage": 92.97, "elapsed_time": "1:39:14", "remaining_time": "0:07:30"} {"current_steps": 415, "total_steps": 441, "loss": 0.7245, "learning_rate": 8.952238940255153e-09, "epoch": 2.808798646362098, "percentage": 94.1, "elapsed_time": "1:40:19", "remaining_time": "0:06:17"} {"current_steps": 420, "total_steps": 441, "loss": 0.7254, "learning_rate": 5.846226741475557e-09, "epoch": 2.8426395939086295, "percentage": 95.24, "elapsed_time": "1:41:25", "remaining_time": "0:05:04"} {"current_steps": 425, "total_steps": 441, "loss": 0.7037, "learning_rate": 3.3965097874343872e-09, "epoch": 2.8764805414551606, "percentage": 96.37, "elapsed_time": "1:42:29", "remaining_time": "0:03:51"} {"current_steps": 430, "total_steps": 441, "loss": 0.7319, "learning_rate": 1.6063415949008618e-09, "epoch": 2.910321489001692, "percentage": 97.51, "elapsed_time": "1:43:35", "remaining_time": "0:02:38"} {"current_steps": 435, "total_steps": 441, "loss": 0.7199, "learning_rate": 4.780997210962478e-10, "epoch": 2.9441624365482233, "percentage": 98.64, "elapsed_time": "1:44:40", "remaining_time": "0:01:26"} {"current_steps": 440, "total_steps": 441, "loss": 0.7036, "learning_rate": 1.328260601385356e-11, "epoch": 2.9780033840947544, "percentage": 99.77, "elapsed_time": "1:45:45", "remaining_time": "0:00:14"} {"current_steps": 441, "total_steps": 441, "epoch": 2.984771573604061, "percentage": 100.0, "elapsed_time": "1:46:29", "remaining_time": "0:00:00"}