File size: 24,607 Bytes
406f0e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
{"current_steps": 5, "total_steps": 552, "loss": 1.7373, "learning_rate": 5e-07, "epoch": 0.02706359945872801, "percentage": 0.91, "elapsed_time": "0:01:09", "remaining_time": "2:05:51"}
{"current_steps": 10, "total_steps": 552, "loss": 1.5834, "learning_rate": 1e-06, "epoch": 0.05412719891745602, "percentage": 1.81, "elapsed_time": "0:02:14", "remaining_time": "2:01:36"}
{"current_steps": 15, "total_steps": 552, "loss": 1.2794, "learning_rate": 9.997900331216397e-07, "epoch": 0.08119079837618404, "percentage": 2.72, "elapsed_time": "0:03:20", "remaining_time": "1:59:48"}
{"current_steps": 20, "total_steps": 552, "loss": 1.1358, "learning_rate": 9.991603088309193e-07, "epoch": 0.10825439783491204, "percentage": 3.62, "elapsed_time": "0:04:25", "remaining_time": "1:57:45"}
{"current_steps": 25, "total_steps": 552, "loss": 1.0736, "learning_rate": 9.981113560128126e-07, "epoch": 0.13531799729364005, "percentage": 4.53, "elapsed_time": "0:05:31", "remaining_time": "1:56:21"}
{"current_steps": 30, "total_steps": 552, "loss": 1.035, "learning_rate": 9.966440556487147e-07, "epoch": 0.16238159675236807, "percentage": 5.43, "elapsed_time": "0:06:36", "remaining_time": "1:55:01"}
{"current_steps": 35, "total_steps": 552, "loss": 1.0091, "learning_rate": 9.947596400765342e-07, "epoch": 0.18944519621109607, "percentage": 6.34, "elapsed_time": "0:07:41", "remaining_time": "1:53:36"}
{"current_steps": 40, "total_steps": 552, "loss": 0.9798, "learning_rate": 9.924596919556916e-07, "epoch": 0.2165087956698241, "percentage": 7.25, "elapsed_time": "0:08:47", "remaining_time": "1:52:29"}
{"current_steps": 45, "total_steps": 552, "loss": 0.9557, "learning_rate": 9.897461429378964e-07, "epoch": 0.2435723951285521, "percentage": 8.15, "elapsed_time": "0:09:51", "remaining_time": "1:51:08"}
{"current_steps": 50, "total_steps": 552, "loss": 0.9274, "learning_rate": 9.866212720448147e-07, "epoch": 0.2706359945872801, "percentage": 9.06, "elapsed_time": "0:10:57", "remaining_time": "1:50:03"}
{"current_steps": 50, "total_steps": 552, "eval_loss": 0.9371856451034546, "epoch": 0.2706359945872801, "percentage": 9.06, "elapsed_time": "0:12:29", "remaining_time": "2:05:29"}
{"current_steps": 55, "total_steps": 552, "loss": 0.9243, "learning_rate": 9.830877037539935e-07, "epoch": 0.2976995940460081, "percentage": 9.96, "elapsed_time": "0:13:35", "remaining_time": "2:02:45"}
{"current_steps": 60, "total_steps": 552, "loss": 0.9356, "learning_rate": 9.791484057946465e-07, "epoch": 0.32476319350473615, "percentage": 10.87, "elapsed_time": "0:14:40", "remaining_time": "2:00:20"}
{"current_steps": 65, "total_steps": 552, "loss": 0.9136, "learning_rate": 9.748066866551555e-07, "epoch": 0.35182679296346414, "percentage": 11.78, "elapsed_time": "0:15:45", "remaining_time": "1:58:04"}
{"current_steps": 70, "total_steps": 552, "loss": 0.9077, "learning_rate": 9.700661928043785e-07, "epoch": 0.37889039242219213, "percentage": 12.68, "elapsed_time": "0:16:50", "remaining_time": "1:56:00"}
{"current_steps": 75, "total_steps": 552, "loss": 0.9102, "learning_rate": 9.649309056290984e-07, "epoch": 0.4059539918809202, "percentage": 13.59, "elapsed_time": "0:17:56", "remaining_time": "1:54:08"}
{"current_steps": 80, "total_steps": 552, "loss": 0.8847, "learning_rate": 9.594051380901858e-07, "epoch": 0.4330175913396482, "percentage": 14.49, "elapsed_time": "0:19:02", "remaining_time": "1:52:21"}
{"current_steps": 85, "total_steps": 552, "loss": 0.8902, "learning_rate": 9.534935311002834e-07, "epoch": 0.46008119079837617, "percentage": 15.4, "elapsed_time": "0:20:07", "remaining_time": "1:50:34"}
{"current_steps": 90, "total_steps": 552, "loss": 0.8873, "learning_rate": 9.472010496260544e-07, "epoch": 0.4871447902571042, "percentage": 16.3, "elapsed_time": "0:21:12", "remaining_time": "1:48:54"}
{"current_steps": 95, "total_steps": 552, "loss": 0.881, "learning_rate": 9.405329785182678e-07, "epoch": 0.5142083897158322, "percentage": 17.21, "elapsed_time": "0:22:18", "remaining_time": "1:47:18"}
{"current_steps": 100, "total_steps": 552, "loss": 0.8893, "learning_rate": 9.334949180732244e-07, "epoch": 0.5412719891745602, "percentage": 18.12, "elapsed_time": "0:23:23", "remaining_time": "1:45:45"}
{"current_steps": 100, "total_steps": 552, "eval_loss": 0.8818467855453491, "epoch": 0.5412719891745602, "percentage": 18.12, "elapsed_time": "0:24:55", "remaining_time": "1:52:40"}
{"current_steps": 105, "total_steps": 552, "loss": 0.8724, "learning_rate": 9.260927793292497e-07, "epoch": 0.5683355886332883, "percentage": 19.02, "elapsed_time": "0:26:01", "remaining_time": "1:50:46"}
{"current_steps": 110, "total_steps": 552, "loss": 0.8944, "learning_rate": 9.183327791022047e-07, "epoch": 0.5953991880920162, "percentage": 19.93, "elapsed_time": "0:27:06", "remaining_time": "1:48:57"}
{"current_steps": 115, "total_steps": 552, "loss": 0.876, "learning_rate": 9.102214347641843e-07, "epoch": 0.6224627875507442, "percentage": 20.83, "elapsed_time": "0:28:12", "remaining_time": "1:47:10"}
{"current_steps": 120, "total_steps": 552, "loss": 0.8822, "learning_rate": 9.017655587697883e-07, "epoch": 0.6495263870094723, "percentage": 21.74, "elapsed_time": "0:29:17", "remaining_time": "1:45:26"}
{"current_steps": 125, "total_steps": 552, "loss": 0.8689, "learning_rate": 8.929722529345623e-07, "epoch": 0.6765899864682002, "percentage": 22.64, "elapsed_time": "0:30:23", "remaining_time": "1:43:49"}
{"current_steps": 130, "total_steps": 552, "loss": 0.8583, "learning_rate": 8.83848902470413e-07, "epoch": 0.7036535859269283, "percentage": 23.55, "elapsed_time": "0:31:29", "remaining_time": "1:42:13"}
{"current_steps": 135, "total_steps": 552, "loss": 0.8662, "learning_rate": 8.744031697830088e-07, "epoch": 0.7307171853856563, "percentage": 24.46, "elapsed_time": "0:32:34", "remaining_time": "1:40:36"}
{"current_steps": 140, "total_steps": 552, "loss": 0.8554, "learning_rate": 8.646429880363746e-07, "epoch": 0.7577807848443843, "percentage": 25.36, "elapsed_time": "0:33:39", "remaining_time": "1:39:03"}
{"current_steps": 145, "total_steps": 552, "loss": 0.859, "learning_rate": 8.545765544900846e-07, "epoch": 0.7848443843031123, "percentage": 26.27, "elapsed_time": "0:34:45", "remaining_time": "1:37:33"}
{"current_steps": 150, "total_steps": 552, "loss": 0.8684, "learning_rate": 8.442123236146508e-07, "epoch": 0.8119079837618404, "percentage": 27.17, "elapsed_time": "0:35:51", "remaining_time": "1:36:05"}
{"current_steps": 150, "total_steps": 552, "eval_loss": 0.8576312065124512, "epoch": 0.8119079837618404, "percentage": 27.17, "elapsed_time": "0:37:23", "remaining_time": "1:40:11"}
{"current_steps": 155, "total_steps": 552, "loss": 0.8259, "learning_rate": 8.33558999990887e-07, "epoch": 0.8389715832205683, "percentage": 28.08, "elapsed_time": "0:38:27", "remaining_time": "1:38:31"}
{"current_steps": 160, "total_steps": 552, "loss": 0.8591, "learning_rate": 8.22625530999215e-07, "epoch": 0.8660351826792964, "percentage": 28.99, "elapsed_time": "0:39:33", "remaining_time": "1:36:55"}
{"current_steps": 165, "total_steps": 552, "loss": 0.8411, "learning_rate": 8.114210993050502e-07, "epoch": 0.8930987821380244, "percentage": 29.89, "elapsed_time": "0:40:38", "remaining_time": "1:35:18"}
{"current_steps": 170, "total_steps": 552, "loss": 0.8509, "learning_rate": 7.999551151465791e-07, "epoch": 0.9201623815967523, "percentage": 30.8, "elapsed_time": "0:41:43", "remaining_time": "1:33:45"}
{"current_steps": 175, "total_steps": 552, "loss": 0.8407, "learning_rate": 7.88237208431406e-07, "epoch": 0.9472259810554804, "percentage": 31.7, "elapsed_time": "0:42:49", "remaining_time": "1:32:16"}
{"current_steps": 180, "total_steps": 552, "loss": 0.8106, "learning_rate": 7.762772206487065e-07, "epoch": 0.9742895805142084, "percentage": 32.61, "elapsed_time": "0:43:55", "remaining_time": "1:30:45"}
{"current_steps": 185, "total_steps": 552, "loss": 0.84, "learning_rate": 7.640851966036805e-07, "epoch": 1.0013531799729365, "percentage": 33.51, "elapsed_time": "0:45:00", "remaining_time": "1:29:17"}
{"current_steps": 190, "total_steps": 552, "loss": 0.7865, "learning_rate": 7.516713759812464e-07, "epoch": 1.0284167794316643, "percentage": 34.42, "elapsed_time": "0:46:06", "remaining_time": "1:27:50"}
{"current_steps": 195, "total_steps": 552, "loss": 0.7834, "learning_rate": 7.390461847460628e-07, "epoch": 1.0554803788903924, "percentage": 35.33, "elapsed_time": "0:47:10", "remaining_time": "1:26:22"}
{"current_steps": 200, "total_steps": 552, "loss": 0.7885, "learning_rate": 7.262202263860988e-07, "epoch": 1.0825439783491204, "percentage": 36.23, "elapsed_time": "0:48:15", "remaining_time": "1:24:55"}
{"current_steps": 200, "total_steps": 552, "eval_loss": 0.8443654775619507, "epoch": 1.0825439783491204, "percentage": 36.23, "elapsed_time": "0:49:47", "remaining_time": "1:27:37"}
{"current_steps": 205, "total_steps": 552, "loss": 0.7751, "learning_rate": 7.1320427300711e-07, "epoch": 1.1096075778078485, "percentage": 37.14, "elapsed_time": "0:50:53", "remaining_time": "1:26:08"}
{"current_steps": 210, "total_steps": 552, "loss": 0.7738, "learning_rate": 7.000092562854959e-07, "epoch": 1.1366711772665765, "percentage": 38.04, "elapsed_time": "0:51:58", "remaining_time": "1:24:38"}
{"current_steps": 215, "total_steps": 552, "loss": 0.7716, "learning_rate": 6.866462582871401e-07, "epoch": 1.1637347767253043, "percentage": 38.95, "elapsed_time": "0:53:04", "remaining_time": "1:23:11"}
{"current_steps": 220, "total_steps": 552, "loss": 0.7802, "learning_rate": 6.731265021599436e-07, "epoch": 1.1907983761840324, "percentage": 39.86, "elapsed_time": "0:54:09", "remaining_time": "1:21:44"}
{"current_steps": 225, "total_steps": 552, "loss": 0.7696, "learning_rate": 6.594613427078674e-07, "epoch": 1.2178619756427604, "percentage": 40.76, "elapsed_time": "0:55:15", "remaining_time": "1:20:18"}
{"current_steps": 230, "total_steps": 552, "loss": 0.7735, "learning_rate": 6.456622568544011e-07, "epoch": 1.2449255751014885, "percentage": 41.67, "elapsed_time": "0:56:19", "remaining_time": "1:18:51"}
{"current_steps": 235, "total_steps": 552, "loss": 0.7793, "learning_rate": 6.317408340034684e-07, "epoch": 1.2719891745602165, "percentage": 42.57, "elapsed_time": "0:57:25", "remaining_time": "1:17:27"}
{"current_steps": 240, "total_steps": 552, "loss": 0.7539, "learning_rate": 6.177087663058625e-07, "epoch": 1.2990527740189446, "percentage": 43.48, "elapsed_time": "0:58:30", "remaining_time": "1:16:03"}
{"current_steps": 245, "total_steps": 552, "loss": 0.7605, "learning_rate": 6.035778388393893e-07, "epoch": 1.3261163734776726, "percentage": 44.38, "elapsed_time": "0:59:36", "remaining_time": "1:14:41"}
{"current_steps": 250, "total_steps": 552, "loss": 0.7588, "learning_rate": 5.893599197109624e-07, "epoch": 1.3531799729364005, "percentage": 45.29, "elapsed_time": "1:00:41", "remaining_time": "1:13:19"}
{"current_steps": 250, "total_steps": 552, "eval_loss": 0.8342949748039246, "epoch": 1.3531799729364005, "percentage": 45.29, "elapsed_time": "1:02:13", "remaining_time": "1:15:10"}
{"current_steps": 255, "total_steps": 552, "loss": 0.7692, "learning_rate": 5.750669500889666e-07, "epoch": 1.3802435723951285, "percentage": 46.2, "elapsed_time": "1:03:18", "remaining_time": "1:13:44"}
{"current_steps": 260, "total_steps": 552, "loss": 0.7721, "learning_rate": 5.607109341742578e-07, "epoch": 1.4073071718538566, "percentage": 47.1, "elapsed_time": "1:04:23", "remaining_time": "1:12:18"}
{"current_steps": 265, "total_steps": 552, "loss": 0.7651, "learning_rate": 5.463039291182256e-07, "epoch": 1.4343707713125846, "percentage": 48.01, "elapsed_time": "1:05:29", "remaining_time": "1:10:55"}
{"current_steps": 270, "total_steps": 552, "loss": 0.7785, "learning_rate": 5.318580348963825e-07, "epoch": 1.4614343707713127, "percentage": 48.91, "elapsed_time": "1:06:35", "remaining_time": "1:09:32"}
{"current_steps": 275, "total_steps": 552, "loss": 0.763, "learning_rate": 5.173853841459877e-07, "epoch": 1.4884979702300405, "percentage": 49.82, "elapsed_time": "1:07:40", "remaining_time": "1:08:10"}
{"current_steps": 280, "total_steps": 552, "loss": 0.755, "learning_rate": 5.028981319762399e-07, "epoch": 1.5155615696887685, "percentage": 50.72, "elapsed_time": "1:08:45", "remaining_time": "1:06:47"}
{"current_steps": 285, "total_steps": 552, "loss": 0.755, "learning_rate": 4.884084457595956e-07, "epoch": 1.5426251691474966, "percentage": 51.63, "elapsed_time": "1:09:50", "remaining_time": "1:05:26"}
{"current_steps": 290, "total_steps": 552, "loss": 0.772, "learning_rate": 4.7392849491278817e-07, "epoch": 1.5696887686062246, "percentage": 52.54, "elapsed_time": "1:10:56", "remaining_time": "1:04:05"}
{"current_steps": 295, "total_steps": 552, "loss": 0.7595, "learning_rate": 4.5947044067613e-07, "epoch": 1.5967523680649527, "percentage": 53.44, "elapsed_time": "1:12:02", "remaining_time": "1:02:45"}
{"current_steps": 300, "total_steps": 552, "loss": 0.7736, "learning_rate": 4.4504642589968217e-07, "epoch": 1.6238159675236807, "percentage": 54.35, "elapsed_time": "1:13:08", "remaining_time": "1:01:25"}
{"current_steps": 300, "total_steps": 552, "eval_loss": 0.8263227343559265, "epoch": 1.6238159675236807, "percentage": 54.35, "elapsed_time": "1:14:40", "remaining_time": "1:02:43"}
{"current_steps": 305, "total_steps": 552, "loss": 0.751, "learning_rate": 4.3066856484486847e-07, "epoch": 1.6508795669824088, "percentage": 55.25, "elapsed_time": "1:15:45", "remaining_time": "1:01:21"}
{"current_steps": 310, "total_steps": 552, "loss": 0.7659, "learning_rate": 4.1634893301010165e-07, "epoch": 1.6779431664411368, "percentage": 56.16, "elapsed_time": "1:16:50", "remaining_time": "0:59:59"}
{"current_steps": 315, "total_steps": 552, "loss": 0.7859, "learning_rate": 4.0209955698896445e-07, "epoch": 1.7050067658998647, "percentage": 57.07, "elapsed_time": "1:17:55", "remaining_time": "0:58:37"}
{"current_steps": 320, "total_steps": 552, "loss": 0.7501, "learning_rate": 3.8793240436946385e-07, "epoch": 1.7320703653585927, "percentage": 57.97, "elapsed_time": "1:19:01", "remaining_time": "0:57:17"}
{"current_steps": 325, "total_steps": 552, "loss": 0.7652, "learning_rate": 3.738593736828426e-07, "epoch": 1.7591339648173205, "percentage": 58.88, "elapsed_time": "1:20:07", "remaining_time": "0:55:57"}
{"current_steps": 330, "total_steps": 552, "loss": 0.7653, "learning_rate": 3.598922844103902e-07, "epoch": 1.7861975642760486, "percentage": 59.78, "elapsed_time": "1:21:13", "remaining_time": "0:54:38"}
{"current_steps": 335, "total_steps": 552, "loss": 0.7667, "learning_rate": 3.4604286705664397e-07, "epoch": 1.8132611637347766, "percentage": 60.69, "elapsed_time": "1:22:18", "remaining_time": "0:53:19"}
{"current_steps": 340, "total_steps": 552, "loss": 0.7478, "learning_rate": 3.323227532973193e-07, "epoch": 1.8403247631935047, "percentage": 61.59, "elapsed_time": "1:23:24", "remaining_time": "0:52:00"}
{"current_steps": 345, "total_steps": 552, "loss": 0.7678, "learning_rate": 3.187434662102434e-07, "epoch": 1.8673883626522327, "percentage": 62.5, "elapsed_time": "1:24:29", "remaining_time": "0:50:41"}
{"current_steps": 350, "total_steps": 552, "loss": 0.7499, "learning_rate": 3.0531641059749634e-07, "epoch": 1.8944519621109608, "percentage": 63.41, "elapsed_time": "1:25:35", "remaining_time": "0:49:23"}
{"current_steps": 350, "total_steps": 552, "eval_loss": 0.8207802176475525, "epoch": 1.8944519621109608, "percentage": 63.41, "elapsed_time": "1:27:07", "remaining_time": "0:50:16"}
{"current_steps": 355, "total_steps": 552, "loss": 0.7482, "learning_rate": 2.920528634068885e-07, "epoch": 1.9215155615696888, "percentage": 64.31, "elapsed_time": "1:28:12", "remaining_time": "0:48:56"}
{"current_steps": 360, "total_steps": 552, "loss": 0.7501, "learning_rate": 2.789639642608184e-07, "epoch": 1.9485791610284169, "percentage": 65.22, "elapsed_time": "1:29:18", "remaining_time": "0:47:37"}
{"current_steps": 365, "total_steps": 552, "loss": 0.7639, "learning_rate": 2.6606070610046526e-07, "epoch": 1.975642760487145, "percentage": 66.12, "elapsed_time": "1:30:23", "remaining_time": "0:46:18"}
{"current_steps": 370, "total_steps": 552, "loss": 0.7545, "learning_rate": 2.533539259531757e-07, "epoch": 2.002706359945873, "percentage": 67.03, "elapsed_time": "1:31:28", "remaining_time": "0:44:59"}
{"current_steps": 375, "total_steps": 552, "loss": 0.7153, "learning_rate": 2.408542958307957e-07, "epoch": 2.029769959404601, "percentage": 67.93, "elapsed_time": "1:32:34", "remaining_time": "0:43:41"}
{"current_steps": 380, "total_steps": 552, "loss": 0.7111, "learning_rate": 2.2857231376659514e-07, "epoch": 2.0568335588633286, "percentage": 68.84, "elapsed_time": "1:33:39", "remaining_time": "0:42:23"}
{"current_steps": 385, "total_steps": 552, "loss": 0.7091, "learning_rate": 2.1651829499831043e-07, "epoch": 2.0838971583220567, "percentage": 69.75, "elapsed_time": "1:34:44", "remaining_time": "0:41:05"}
{"current_steps": 390, "total_steps": 552, "loss": 0.6938, "learning_rate": 2.0470236330471126e-07, "epoch": 2.1109607577807847, "percentage": 70.65, "elapsed_time": "1:35:50", "remaining_time": "0:39:48"}
{"current_steps": 395, "total_steps": 552, "loss": 0.725, "learning_rate": 1.9313444250296846e-07, "epoch": 2.138024357239513, "percentage": 71.56, "elapsed_time": "1:36:55", "remaining_time": "0:38:31"}
{"current_steps": 400, "total_steps": 552, "loss": 0.6949, "learning_rate": 1.818242481139613e-07, "epoch": 2.165087956698241, "percentage": 72.46, "elapsed_time": "1:38:01", "remaining_time": "0:37:14"}
{"current_steps": 400, "total_steps": 552, "eval_loss": 0.823599100112915, "epoch": 2.165087956698241, "percentage": 72.46, "elapsed_time": "1:39:33", "remaining_time": "0:37:49"}
{"current_steps": 405, "total_steps": 552, "loss": 0.7078, "learning_rate": 1.7078127920252783e-07, "epoch": 2.192151556156969, "percentage": 73.37, "elapsed_time": "1:40:37", "remaining_time": "0:36:31"}
{"current_steps": 410, "total_steps": 552, "loss": 0.7089, "learning_rate": 1.600148103995087e-07, "epoch": 2.219215155615697, "percentage": 74.28, "elapsed_time": "1:41:44", "remaining_time": "0:35:14"}
{"current_steps": 415, "total_steps": 552, "loss": 0.7351, "learning_rate": 1.4953388411228602e-07, "epoch": 2.246278755074425, "percentage": 75.18, "elapsed_time": "1:42:49", "remaining_time": "0:33:56"}
{"current_steps": 420, "total_steps": 552, "loss": 0.7127, "learning_rate": 1.3934730293035936e-07, "epoch": 2.273342354533153, "percentage": 76.09, "elapsed_time": "1:43:54", "remaining_time": "0:32:39"}
{"current_steps": 425, "total_steps": 552, "loss": 0.7155, "learning_rate": 1.2946362223233614e-07, "epoch": 2.300405953991881, "percentage": 76.99, "elapsed_time": "1:45:00", "remaining_time": "0:31:22"}
{"current_steps": 430, "total_steps": 552, "loss": 0.7248, "learning_rate": 1.198911430005478e-07, "epoch": 2.3274695534506087, "percentage": 77.9, "elapsed_time": "1:46:04", "remaining_time": "0:30:05"}
{"current_steps": 435, "total_steps": 552, "loss": 0.7125, "learning_rate": 1.1063790484932462e-07, "epoch": 2.3545331529093367, "percentage": 78.8, "elapsed_time": "1:47:09", "remaining_time": "0:28:49"}
{"current_steps": 440, "total_steps": 552, "loss": 0.7087, "learning_rate": 1.0171167927278368e-07, "epoch": 2.381596752368065, "percentage": 79.71, "elapsed_time": "1:48:15", "remaining_time": "0:27:33"}
{"current_steps": 445, "total_steps": 552, "loss": 0.7013, "learning_rate": 9.311996311780446e-08, "epoch": 2.408660351826793, "percentage": 80.62, "elapsed_time": "1:49:20", "remaining_time": "0:26:17"}
{"current_steps": 450, "total_steps": 552, "loss": 0.7056, "learning_rate": 8.486997228767012e-08, "epoch": 2.435723951285521, "percentage": 81.52, "elapsed_time": "1:50:26", "remaining_time": "0:25:01"}
{"current_steps": 450, "total_steps": 552, "eval_loss": 0.8227203488349915, "epoch": 2.435723951285521, "percentage": 81.52, "elapsed_time": "1:51:58", "remaining_time": "0:25:22"}
{"current_steps": 455, "total_steps": 552, "loss": 0.7216, "learning_rate": 7.696863568166518e-08, "epoch": 2.462787550744249, "percentage": 82.43, "elapsed_time": "1:53:03", "remaining_time": "0:24:06"}
{"current_steps": 460, "total_steps": 552, "loss": 0.6922, "learning_rate": 6.942258937571771e-08, "epoch": 2.489851150202977, "percentage": 83.33, "elapsed_time": "1:54:08", "remaining_time": "0:22:49"}
{"current_steps": 465, "total_steps": 552, "loss": 0.7127, "learning_rate": 6.2238171048975e-08, "epoch": 2.516914749661705, "percentage": 84.24, "elapsed_time": "1:55:14", "remaining_time": "0:21:33"}
{"current_steps": 470, "total_steps": 552, "loss": 0.7072, "learning_rate": 5.5421414660992705e-08, "epoch": 2.543978349120433, "percentage": 85.14, "elapsed_time": "1:56:19", "remaining_time": "0:20:17"}
{"current_steps": 475, "total_steps": 552, "loss": 0.6983, "learning_rate": 4.8978045384008125e-08, "epoch": 2.571041948579161, "percentage": 86.05, "elapsed_time": "1:57:24", "remaining_time": "0:19:01"}
{"current_steps": 480, "total_steps": 552, "loss": 0.718, "learning_rate": 4.2913474794554036e-08, "epoch": 2.598105548037889, "percentage": 86.96, "elapsed_time": "1:58:29", "remaining_time": "0:17:46"}
{"current_steps": 485, "total_steps": 552, "loss": 0.6992, "learning_rate": 3.723279632845155e-08, "epoch": 2.6251691474966172, "percentage": 87.86, "elapsed_time": "1:59:35", "remaining_time": "0:16:31"}
{"current_steps": 490, "total_steps": 552, "loss": 0.7154, "learning_rate": 3.194078100299863e-08, "epoch": 2.6522327469553453, "percentage": 88.77, "elapsed_time": "2:00:40", "remaining_time": "0:15:16"}
{"current_steps": 495, "total_steps": 552, "loss": 0.715, "learning_rate": 2.7041873409947734e-08, "epoch": 2.6792963464140733, "percentage": 89.67, "elapsed_time": "2:01:45", "remaining_time": "0:14:01"}
{"current_steps": 500, "total_steps": 552, "loss": 0.7001, "learning_rate": 2.2540187982637627e-08, "epoch": 2.706359945872801, "percentage": 90.58, "elapsed_time": "2:02:51", "remaining_time": "0:12:46"}
{"current_steps": 500, "total_steps": 552, "eval_loss": 0.8219273686408997, "epoch": 2.706359945872801, "percentage": 90.58, "elapsed_time": "2:04:23", "remaining_time": "0:12:56"}
{"current_steps": 505, "total_steps": 552, "loss": 0.7019, "learning_rate": 1.8439505540414458e-08, "epoch": 2.733423545331529, "percentage": 91.49, "elapsed_time": "2:05:29", "remaining_time": "0:11:40"}
{"current_steps": 510, "total_steps": 552, "loss": 0.6896, "learning_rate": 1.4743270113244277e-08, "epoch": 2.760487144790257, "percentage": 92.39, "elapsed_time": "2:06:34", "remaining_time": "0:10:25"}
{"current_steps": 515, "total_steps": 552, "loss": 0.7095, "learning_rate": 1.1454586049184589e-08, "epoch": 2.787550744248985, "percentage": 93.3, "elapsed_time": "2:07:40", "remaining_time": "0:09:10"}
{"current_steps": 520, "total_steps": 552, "loss": 0.6985, "learning_rate": 8.576215407142651e-09, "epoch": 2.814614343707713, "percentage": 94.2, "elapsed_time": "2:08:46", "remaining_time": "0:07:55"}
{"current_steps": 525, "total_steps": 552, "loss": 0.7077, "learning_rate": 6.110575637112425e-09, "epoch": 2.841677943166441, "percentage": 95.11, "elapsed_time": "2:09:52", "remaining_time": "0:06:40"}
{"current_steps": 530, "total_steps": 552, "loss": 0.707, "learning_rate": 4.059737549836517e-09, "epoch": 2.8687415426251692, "percentage": 96.01, "elapsed_time": "2:10:58", "remaining_time": "0:05:26"}
{"current_steps": 535, "total_steps": 552, "loss": 0.6974, "learning_rate": 2.425423577599783e-09, "epoch": 2.8958051420838973, "percentage": 96.92, "elapsed_time": "2:12:03", "remaining_time": "0:04:11"}
{"current_steps": 540, "total_steps": 552, "loss": 0.7088, "learning_rate": 1.209006327614226e-09, "epoch": 2.9228687415426253, "percentage": 97.83, "elapsed_time": "2:13:09", "remaining_time": "0:02:57"}
{"current_steps": 545, "total_steps": 552, "loss": 0.7058, "learning_rate": 4.115074292109777e-10, "epoch": 2.949932341001353, "percentage": 98.73, "elapsed_time": "2:14:14", "remaining_time": "0:01:43"}
{"current_steps": 550, "total_steps": 552, "loss": 0.7045, "learning_rate": 3.3596675806824013e-11, "epoch": 2.976995940460081, "percentage": 99.64, "elapsed_time": "2:15:19", "remaining_time": "0:00:29"}
{"current_steps": 550, "total_steps": 552, "eval_loss": 0.8217999339103699, "epoch": 2.976995940460081, "percentage": 99.64, "elapsed_time": "2:16:51", "remaining_time": "0:00:29"}
{"current_steps": 552, "total_steps": 552, "epoch": 2.9878213802435725, "percentage": 100.0, "elapsed_time": "2:17:50", "remaining_time": "0:00:00"}
|