File size: 2,300 Bytes
fc7e60c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: Compcap_cooccur_0_70
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Compcap_cooccur_0_70
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the Compcap_cooccur_0_70 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9216 | 0.1934 | 50 | 0.9377 |
| 0.872 | 0.3868 | 100 | 0.8799 |
| 0.8452 | 0.5803 | 150 | 0.8544 |
| 0.8444 | 0.7737 | 200 | 0.8375 |
| 0.8236 | 0.9671 | 250 | 0.8248 |
| 0.776 | 1.1605 | 300 | 0.8194 |
| 0.7598 | 1.3540 | 350 | 0.8137 |
| 0.7539 | 1.5474 | 400 | 0.8075 |
| 0.7273 | 1.7408 | 450 | 0.8021 |
| 0.7314 | 1.9342 | 500 | 0.7983 |
| 0.7094 | 2.1277 | 550 | 0.8029 |
| 0.7073 | 2.3211 | 600 | 0.8018 |
| 0.6944 | 2.5145 | 650 | 0.8011 |
| 0.6841 | 2.7079 | 700 | 0.8003 |
| 0.6832 | 2.9014 | 750 | 0.8001 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
|