File size: 44,277 Bytes
9606a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
{"current_steps": 5, "total_steps": 996, "loss": 1.7267, "learning_rate": 5e-07, "epoch": 0.015048908954100828, "percentage": 0.5, "elapsed_time": "0:01:09", "remaining_time": "3:50:04"}
{"current_steps": 10, "total_steps": 996, "loss": 1.5935, "learning_rate": 1e-06, "epoch": 0.030097817908201655, "percentage": 1.0, "elapsed_time": "0:02:15", "remaining_time": "3:42:40"}
{"current_steps": 15, "total_steps": 996, "loss": 1.2846, "learning_rate": 9.999365521737421e-07, "epoch": 0.045146726862302484, "percentage": 1.51, "elapsed_time": "0:03:21", "remaining_time": "3:39:27"}
{"current_steps": 20, "total_steps": 996, "loss": 1.147, "learning_rate": 9.99746224797475e-07, "epoch": 0.06019563581640331, "percentage": 2.01, "elapsed_time": "0:04:26", "remaining_time": "3:36:57"}
{"current_steps": 25, "total_steps": 996, "loss": 1.0702, "learning_rate": 9.99429066174632e-07, "epoch": 0.07524454477050414, "percentage": 2.51, "elapsed_time": "0:05:32", "remaining_time": "3:35:29"}
{"current_steps": 30, "total_steps": 996, "loss": 1.0299, "learning_rate": 9.989851567973138e-07, "epoch": 0.09029345372460497, "percentage": 3.01, "elapsed_time": "0:06:38", "remaining_time": "3:34:02"}
{"current_steps": 35, "total_steps": 996, "loss": 0.996, "learning_rate": 9.984146093258608e-07, "epoch": 0.1053423626787058, "percentage": 3.51, "elapsed_time": "0:07:44", "remaining_time": "3:32:27"}
{"current_steps": 40, "total_steps": 996, "loss": 0.9736, "learning_rate": 9.9771756856026e-07, "epoch": 0.12039127163280662, "percentage": 4.02, "elapsed_time": "0:08:50", "remaining_time": "3:31:10"}
{"current_steps": 45, "total_steps": 996, "loss": 0.9431, "learning_rate": 9.968942114033973e-07, "epoch": 0.13544018058690746, "percentage": 4.52, "elapsed_time": "0:09:55", "remaining_time": "3:29:42"}
{"current_steps": 50, "total_steps": 996, "loss": 0.9273, "learning_rate": 9.959447468161596e-07, "epoch": 0.1504890895410083, "percentage": 5.02, "elapsed_time": "0:11:00", "remaining_time": "3:28:24"}
{"current_steps": 50, "total_steps": 996, "eval_loss": 0.936109185218811, "epoch": 0.1504890895410083, "percentage": 5.02, "elapsed_time": "0:13:47", "remaining_time": "4:20:54"}
{"current_steps": 55, "total_steps": 996, "loss": 0.9287, "learning_rate": 9.948694157644042e-07, "epoch": 0.1655379984951091, "percentage": 5.52, "elapsed_time": "0:14:52", "remaining_time": "4:14:32"}
{"current_steps": 60, "total_steps": 996, "loss": 0.9232, "learning_rate": 9.936684911578017e-07, "epoch": 0.18058690744920994, "percentage": 6.02, "elapsed_time": "0:15:58", "remaining_time": "4:09:14"}
{"current_steps": 65, "total_steps": 996, "loss": 0.9329, "learning_rate": 9.923422777805751e-07, "epoch": 0.19563581640331076, "percentage": 6.53, "elapsed_time": "0:17:04", "remaining_time": "4:04:38"}
{"current_steps": 70, "total_steps": 996, "loss": 0.8932, "learning_rate": 9.908911122141486e-07, "epoch": 0.2106847253574116, "percentage": 7.03, "elapsed_time": "0:18:10", "remaining_time": "4:00:27"}
{"current_steps": 75, "total_steps": 996, "loss": 0.8696, "learning_rate": 9.893153627517248e-07, "epoch": 0.22573363431151242, "percentage": 7.53, "elapsed_time": "0:19:15", "remaining_time": "3:56:30"}
{"current_steps": 80, "total_steps": 996, "loss": 0.8977, "learning_rate": 9.876154293048163e-07, "epoch": 0.24078254326561324, "percentage": 8.03, "elapsed_time": "0:20:20", "remaining_time": "3:52:58"}
{"current_steps": 85, "total_steps": 996, "loss": 0.8997, "learning_rate": 9.857917433017508e-07, "epoch": 0.2558314522197141, "percentage": 8.53, "elapsed_time": "0:21:26", "remaining_time": "3:49:50"}
{"current_steps": 90, "total_steps": 996, "loss": 0.8567, "learning_rate": 9.838447675781793e-07, "epoch": 0.2708803611738149, "percentage": 9.04, "elapsed_time": "0:22:32", "remaining_time": "3:46:52"}
{"current_steps": 95, "total_steps": 996, "loss": 0.8692, "learning_rate": 9.817749962596114e-07, "epoch": 0.28592927012791575, "percentage": 9.54, "elapsed_time": "0:23:38", "remaining_time": "3:44:10"}
{"current_steps": 100, "total_steps": 996, "loss": 0.8938, "learning_rate": 9.795829546360113e-07, "epoch": 0.3009781790820166, "percentage": 10.04, "elapsed_time": "0:24:43", "remaining_time": "3:41:34"}
{"current_steps": 100, "total_steps": 996, "eval_loss": 0.8804982900619507, "epoch": 0.3009781790820166, "percentage": 10.04, "elapsed_time": "0:27:28", "remaining_time": "4:06:14"}
{"current_steps": 105, "total_steps": 996, "loss": 0.8744, "learning_rate": 9.77269199028483e-07, "epoch": 0.3160270880361174, "percentage": 10.54, "elapsed_time": "0:28:33", "remaining_time": "4:02:22"}
{"current_steps": 110, "total_steps": 996, "loss": 0.8506, "learning_rate": 9.748343166480822e-07, "epoch": 0.3310759969902182, "percentage": 11.04, "elapsed_time": "0:29:38", "remaining_time": "3:58:47"}
{"current_steps": 115, "total_steps": 996, "loss": 0.8583, "learning_rate": 9.722789254467854e-07, "epoch": 0.34612490594431905, "percentage": 11.55, "elapsed_time": "0:30:44", "remaining_time": "3:55:27"}
{"current_steps": 120, "total_steps": 996, "loss": 0.8699, "learning_rate": 9.696036739606606e-07, "epoch": 0.3611738148984199, "percentage": 12.05, "elapsed_time": "0:31:48", "remaining_time": "3:52:14"}
{"current_steps": 125, "total_steps": 996, "loss": 0.87, "learning_rate": 9.668092411452735e-07, "epoch": 0.3762227238525207, "percentage": 12.55, "elapsed_time": "0:32:54", "remaining_time": "3:49:15"}
{"current_steps": 130, "total_steps": 996, "loss": 0.8627, "learning_rate": 9.638963362033756e-07, "epoch": 0.3912716328066215, "percentage": 13.05, "elapsed_time": "0:33:59", "remaining_time": "3:46:29"}
{"current_steps": 135, "total_steps": 996, "loss": 0.842, "learning_rate": 9.608656984049132e-07, "epoch": 0.40632054176072235, "percentage": 13.55, "elapsed_time": "0:35:05", "remaining_time": "3:43:47"}
{"current_steps": 140, "total_steps": 996, "loss": 0.8367, "learning_rate": 9.577180968994081e-07, "epoch": 0.4213694507148232, "percentage": 14.06, "elapsed_time": "0:36:10", "remaining_time": "3:41:10"}
{"current_steps": 145, "total_steps": 996, "loss": 0.8565, "learning_rate": 9.544543305207546e-07, "epoch": 0.436418359668924, "percentage": 14.56, "elapsed_time": "0:37:16", "remaining_time": "3:38:44"}
{"current_steps": 150, "total_steps": 996, "loss": 0.8476, "learning_rate": 9.510752275844809e-07, "epoch": 0.45146726862302483, "percentage": 15.06, "elapsed_time": "0:38:21", "remaining_time": "3:36:21"}
{"current_steps": 150, "total_steps": 996, "eval_loss": 0.8552336692810059, "epoch": 0.45146726862302483, "percentage": 15.06, "elapsed_time": "0:41:05", "remaining_time": "3:51:48"}
{"current_steps": 155, "total_steps": 996, "loss": 0.8419, "learning_rate": 9.475816456775312e-07, "epoch": 0.46651617757712566, "percentage": 15.56, "elapsed_time": "0:42:11", "remaining_time": "3:48:57"}
{"current_steps": 160, "total_steps": 996, "loss": 0.8571, "learning_rate": 9.439744714406166e-07, "epoch": 0.4815650865312265, "percentage": 16.06, "elapsed_time": "0:43:17", "remaining_time": "3:46:11"}
{"current_steps": 165, "total_steps": 996, "loss": 0.8552, "learning_rate": 9.402546203431947e-07, "epoch": 0.4966139954853273, "percentage": 16.57, "elapsed_time": "0:44:23", "remaining_time": "3:43:32"}
{"current_steps": 170, "total_steps": 996, "loss": 0.8284, "learning_rate": 9.364230364511295e-07, "epoch": 0.5116629044394282, "percentage": 17.07, "elapsed_time": "0:45:28", "remaining_time": "3:40:58"}
{"current_steps": 175, "total_steps": 996, "loss": 0.8445, "learning_rate": 9.324806921870975e-07, "epoch": 0.526711813393529, "percentage": 17.57, "elapsed_time": "0:46:34", "remaining_time": "3:38:28"}
{"current_steps": 180, "total_steps": 996, "loss": 0.8467, "learning_rate": 9.284285880837946e-07, "epoch": 0.5417607223476298, "percentage": 18.07, "elapsed_time": "0:47:39", "remaining_time": "3:36:03"}
{"current_steps": 185, "total_steps": 996, "loss": 0.8444, "learning_rate": 9.242677525300088e-07, "epoch": 0.5568096313017307, "percentage": 18.57, "elapsed_time": "0:48:44", "remaining_time": "3:33:38"}
{"current_steps": 190, "total_steps": 996, "loss": 0.8329, "learning_rate": 9.199992415096259e-07, "epoch": 0.5718585402558315, "percentage": 19.08, "elapsed_time": "0:49:49", "remaining_time": "3:31:23"}
{"current_steps": 195, "total_steps": 996, "loss": 0.8393, "learning_rate": 9.156241383336278e-07, "epoch": 0.5869074492099323, "percentage": 19.58, "elapsed_time": "0:50:55", "remaining_time": "3:29:10"}
{"current_steps": 200, "total_steps": 996, "loss": 0.8413, "learning_rate": 9.111435533651595e-07, "epoch": 0.6019563581640331, "percentage": 20.08, "elapsed_time": "0:52:01", "remaining_time": "3:27:01"}
{"current_steps": 200, "total_steps": 996, "eval_loss": 0.8378457427024841, "epoch": 0.6019563581640331, "percentage": 20.08, "elapsed_time": "0:54:45", "remaining_time": "3:37:55"}
{"current_steps": 205, "total_steps": 996, "loss": 0.8383, "learning_rate": 9.065586237377274e-07, "epoch": 0.617005267118134, "percentage": 20.58, "elapsed_time": "0:55:50", "remaining_time": "3:35:29"}
{"current_steps": 210, "total_steps": 996, "loss": 0.846, "learning_rate": 9.018705130666049e-07, "epoch": 0.6320541760722348, "percentage": 21.08, "elapsed_time": "0:56:55", "remaining_time": "3:33:04"}
{"current_steps": 215, "total_steps": 996, "loss": 0.8348, "learning_rate": 8.970804111535175e-07, "epoch": 0.6471030850263356, "percentage": 21.59, "elapsed_time": "0:58:01", "remaining_time": "3:30:46"}
{"current_steps": 220, "total_steps": 996, "loss": 0.8237, "learning_rate": 8.921895336846812e-07, "epoch": 0.6621519939804364, "percentage": 22.09, "elapsed_time": "0:59:05", "remaining_time": "3:28:27"}
{"current_steps": 225, "total_steps": 996, "loss": 0.8363, "learning_rate": 8.871991219222712e-07, "epoch": 0.6772009029345373, "percentage": 22.59, "elapsed_time": "1:00:10", "remaining_time": "3:26:13"}
{"current_steps": 230, "total_steps": 996, "loss": 0.8115, "learning_rate": 8.821104423894014e-07, "epoch": 0.6922498118886381, "percentage": 23.09, "elapsed_time": "1:01:16", "remaining_time": "3:24:04"}
{"current_steps": 235, "total_steps": 996, "loss": 0.8129, "learning_rate": 8.769247865486915e-07, "epoch": 0.7072987208427389, "percentage": 23.59, "elapsed_time": "1:02:22", "remaining_time": "3:21:59"}
{"current_steps": 240, "total_steps": 996, "loss": 0.8243, "learning_rate": 8.716434704745046e-07, "epoch": 0.7223476297968398, "percentage": 24.1, "elapsed_time": "1:03:28", "remaining_time": "3:19:56"}
{"current_steps": 245, "total_steps": 996, "loss": 0.8394, "learning_rate": 8.662678345189396e-07, "epoch": 0.7373965387509406, "percentage": 24.6, "elapsed_time": "1:04:33", "remaining_time": "3:17:54"}
{"current_steps": 250, "total_steps": 996, "loss": 0.8254, "learning_rate": 8.607992429716608e-07, "epoch": 0.7524454477050414, "percentage": 25.1, "elapsed_time": "1:05:39", "remaining_time": "3:15:55"}
{"current_steps": 250, "total_steps": 996, "eval_loss": 0.8255200982093811, "epoch": 0.7524454477050414, "percentage": 25.1, "elapsed_time": "1:08:24", "remaining_time": "3:24:06"}
{"current_steps": 255, "total_steps": 996, "loss": 0.8209, "learning_rate": 8.55239083713654e-07, "epoch": 0.7674943566591422, "percentage": 25.6, "elapsed_time": "1:09:30", "remaining_time": "3:21:58"}
{"current_steps": 260, "total_steps": 996, "loss": 0.8235, "learning_rate": 8.495887678649932e-07, "epoch": 0.782543265613243, "percentage": 26.1, "elapsed_time": "1:10:34", "remaining_time": "3:19:48"}
{"current_steps": 265, "total_steps": 996, "loss": 0.8148, "learning_rate": 8.438497294267116e-07, "epoch": 0.7975921745673439, "percentage": 26.61, "elapsed_time": "1:11:39", "remaining_time": "3:17:40"}
{"current_steps": 270, "total_steps": 996, "loss": 0.8237, "learning_rate": 8.38023424916864e-07, "epoch": 0.8126410835214447, "percentage": 27.11, "elapsed_time": "1:12:44", "remaining_time": "3:15:36"}
{"current_steps": 275, "total_steps": 996, "loss": 0.8199, "learning_rate": 8.321113330008756e-07, "epoch": 0.8276899924755455, "percentage": 27.61, "elapsed_time": "1:13:50", "remaining_time": "3:13:36"}
{"current_steps": 280, "total_steps": 996, "loss": 0.8198, "learning_rate": 8.261149541162691e-07, "epoch": 0.8427389014296464, "percentage": 28.11, "elapsed_time": "1:14:56", "remaining_time": "3:11:38"}
{"current_steps": 285, "total_steps": 996, "loss": 0.833, "learning_rate": 8.20035810091867e-07, "epoch": 0.8577878103837472, "percentage": 28.61, "elapsed_time": "1:16:02", "remaining_time": "3:09:41"}
{"current_steps": 290, "total_steps": 996, "loss": 0.8336, "learning_rate": 8.13875443761565e-07, "epoch": 0.872836719337848, "percentage": 29.12, "elapsed_time": "1:17:08", "remaining_time": "3:07:47"}
{"current_steps": 295, "total_steps": 996, "loss": 0.8211, "learning_rate": 8.076354185727734e-07, "epoch": 0.8878856282919488, "percentage": 29.62, "elapsed_time": "1:18:13", "remaining_time": "3:05:53"}
{"current_steps": 300, "total_steps": 996, "loss": 0.8091, "learning_rate": 8.013173181896282e-07, "epoch": 0.9029345372460497, "percentage": 30.12, "elapsed_time": "1:19:19", "remaining_time": "3:04:01"}
{"current_steps": 300, "total_steps": 996, "eval_loss": 0.8148868680000305, "epoch": 0.9029345372460497, "percentage": 30.12, "elapsed_time": "1:22:03", "remaining_time": "3:10:23"}
{"current_steps": 305, "total_steps": 996, "loss": 0.8271, "learning_rate": 7.94922746091071e-07, "epoch": 0.9179834462001505, "percentage": 30.62, "elapsed_time": "1:23:09", "remaining_time": "3:08:23"}
{"current_steps": 310, "total_steps": 996, "loss": 0.7997, "learning_rate": 7.884533251638999e-07, "epoch": 0.9330323551542513, "percentage": 31.12, "elapsed_time": "1:24:15", "remaining_time": "3:06:26"}
{"current_steps": 315, "total_steps": 996, "loss": 0.8131, "learning_rate": 7.819106972908949e-07, "epoch": 0.9480812641083521, "percentage": 31.63, "elapsed_time": "1:25:20", "remaining_time": "3:04:30"}
{"current_steps": 320, "total_steps": 996, "loss": 0.8244, "learning_rate": 7.752965229341219e-07, "epoch": 0.963130173062453, "percentage": 32.13, "elapsed_time": "1:26:25", "remaining_time": "3:02:35"}
{"current_steps": 325, "total_steps": 996, "loss": 0.8056, "learning_rate": 7.686124807135228e-07, "epoch": 0.9781790820165538, "percentage": 32.63, "elapsed_time": "1:27:30", "remaining_time": "3:00:40"}
{"current_steps": 330, "total_steps": 996, "loss": 0.8193, "learning_rate": 7.618602669808957e-07, "epoch": 0.9932279909706546, "percentage": 33.13, "elapsed_time": "1:28:36", "remaining_time": "2:58:49"}
{"current_steps": 335, "total_steps": 996, "loss": 0.781, "learning_rate": 7.550415953893756e-07, "epoch": 1.0082768999247556, "percentage": 33.63, "elapsed_time": "1:29:42", "remaining_time": "2:56:59"}
{"current_steps": 340, "total_steps": 996, "loss": 0.7508, "learning_rate": 7.481581964585244e-07, "epoch": 1.0233258088788564, "percentage": 34.14, "elapsed_time": "1:30:47", "remaining_time": "2:55:10"}
{"current_steps": 345, "total_steps": 996, "loss": 0.7483, "learning_rate": 7.412118171351395e-07, "epoch": 1.0383747178329572, "percentage": 34.64, "elapsed_time": "1:31:52", "remaining_time": "2:53:22"}
{"current_steps": 350, "total_steps": 996, "loss": 0.7271, "learning_rate": 7.342042203498951e-07, "epoch": 1.053423626787058, "percentage": 35.14, "elapsed_time": "1:32:58", "remaining_time": "2:51:36"}
{"current_steps": 350, "total_steps": 996, "eval_loss": 0.8104769587516785, "epoch": 1.053423626787058, "percentage": 35.14, "elapsed_time": "1:35:43", "remaining_time": "2:56:40"}
{"current_steps": 355, "total_steps": 996, "loss": 0.7538, "learning_rate": 7.271371845699241e-07, "epoch": 1.0684725357411589, "percentage": 35.64, "elapsed_time": "1:36:48", "remaining_time": "2:54:48"}
{"current_steps": 360, "total_steps": 996, "loss": 0.7428, "learning_rate": 7.200125033474598e-07, "epoch": 1.0835214446952597, "percentage": 36.14, "elapsed_time": "1:37:54", "remaining_time": "2:52:58"}
{"current_steps": 365, "total_steps": 996, "loss": 0.7528, "learning_rate": 7.128319848646477e-07, "epoch": 1.0985703536493605, "percentage": 36.65, "elapsed_time": "1:38:59", "remaining_time": "2:51:08"}
{"current_steps": 370, "total_steps": 996, "loss": 0.7583, "learning_rate": 7.055974514746445e-07, "epoch": 1.1136192626034613, "percentage": 37.15, "elapsed_time": "1:40:05", "remaining_time": "2:49:20"}
{"current_steps": 375, "total_steps": 996, "loss": 0.7333, "learning_rate": 6.983107392391202e-07, "epoch": 1.1286681715575622, "percentage": 37.65, "elapsed_time": "1:41:11", "remaining_time": "2:47:33"}
{"current_steps": 380, "total_steps": 996, "loss": 0.7367, "learning_rate": 6.909736974622826e-07, "epoch": 1.143717080511663, "percentage": 38.15, "elapsed_time": "1:42:16", "remaining_time": "2:45:47"}
{"current_steps": 385, "total_steps": 996, "loss": 0.7389, "learning_rate": 6.835881882215395e-07, "epoch": 1.1587659894657638, "percentage": 38.65, "elapsed_time": "1:43:21", "remaining_time": "2:44:02"}
{"current_steps": 390, "total_steps": 996, "loss": 0.7272, "learning_rate": 6.761560858949192e-07, "epoch": 1.1738148984198646, "percentage": 39.16, "elapsed_time": "1:44:27", "remaining_time": "2:42:18"}
{"current_steps": 395, "total_steps": 996, "loss": 0.7411, "learning_rate": 6.686792766853705e-07, "epoch": 1.1888638073739655, "percentage": 39.66, "elapsed_time": "1:45:32", "remaining_time": "2:40:35"}
{"current_steps": 400, "total_steps": 996, "loss": 0.7383, "learning_rate": 6.611596581420599e-07, "epoch": 1.2039127163280663, "percentage": 40.16, "elapsed_time": "1:46:38", "remaining_time": "2:38:53"}
{"current_steps": 400, "total_steps": 996, "eval_loss": 0.8055551648139954, "epoch": 1.2039127163280663, "percentage": 40.16, "elapsed_time": "1:49:23", "remaining_time": "2:42:59"}
{"current_steps": 405, "total_steps": 996, "loss": 0.7447, "learning_rate": 6.53599138678791e-07, "epoch": 1.2189616252821671, "percentage": 40.66, "elapsed_time": "1:50:28", "remaining_time": "2:41:13"}
{"current_steps": 410, "total_steps": 996, "loss": 0.7143, "learning_rate": 6.459996370896652e-07, "epoch": 1.234010534236268, "percentage": 41.16, "elapsed_time": "1:51:34", "remaining_time": "2:39:27"}
{"current_steps": 415, "total_steps": 996, "loss": 0.7486, "learning_rate": 6.383630820621081e-07, "epoch": 1.2490594431903688, "percentage": 41.67, "elapsed_time": "1:52:39", "remaining_time": "2:37:43"}
{"current_steps": 420, "total_steps": 996, "loss": 0.7428, "learning_rate": 6.306914116873862e-07, "epoch": 1.2641083521444696, "percentage": 42.17, "elapsed_time": "1:53:44", "remaining_time": "2:35:59"}
{"current_steps": 425, "total_steps": 996, "loss": 0.7466, "learning_rate": 6.22986572968736e-07, "epoch": 1.2791572610985704, "percentage": 42.67, "elapsed_time": "1:54:48", "remaining_time": "2:34:15"}
{"current_steps": 430, "total_steps": 996, "loss": 0.7568, "learning_rate": 6.152505213272307e-07, "epoch": 1.2942061700526712, "percentage": 43.17, "elapsed_time": "1:55:54", "remaining_time": "2:32:34"}
{"current_steps": 435, "total_steps": 996, "loss": 0.7345, "learning_rate": 6.074852201055121e-07, "epoch": 1.309255079006772, "percentage": 43.67, "elapsed_time": "1:57:00", "remaining_time": "2:30:54"}
{"current_steps": 440, "total_steps": 996, "loss": 0.7423, "learning_rate": 5.996926400695113e-07, "epoch": 1.324303987960873, "percentage": 44.18, "elapsed_time": "1:58:06", "remaining_time": "2:29:14"}
{"current_steps": 445, "total_steps": 996, "loss": 0.7435, "learning_rate": 5.918747589082852e-07, "epoch": 1.3393528969149737, "percentage": 44.68, "elapsed_time": "1:59:11", "remaining_time": "2:27:35"}
{"current_steps": 450, "total_steps": 996, "loss": 0.7543, "learning_rate": 5.840335607320963e-07, "epoch": 1.3544018058690745, "percentage": 45.18, "elapsed_time": "2:00:17", "remaining_time": "2:25:57"}
{"current_steps": 450, "total_steps": 996, "eval_loss": 0.8005452752113342, "epoch": 1.3544018058690745, "percentage": 45.18, "elapsed_time": "2:03:02", "remaining_time": "2:29:17"}
{"current_steps": 455, "total_steps": 996, "loss": 0.7147, "learning_rate": 5.761710355688627e-07, "epoch": 1.3694507148231754, "percentage": 45.68, "elapsed_time": "2:04:07", "remaining_time": "2:27:35"}
{"current_steps": 460, "total_steps": 996, "loss": 0.7449, "learning_rate": 5.682891788591065e-07, "epoch": 1.3844996237772762, "percentage": 46.18, "elapsed_time": "2:05:12", "remaining_time": "2:25:53"}
{"current_steps": 465, "total_steps": 996, "loss": 0.7245, "learning_rate": 5.603899909495283e-07, "epoch": 1.399548532731377, "percentage": 46.69, "elapsed_time": "2:06:17", "remaining_time": "2:24:13"}
{"current_steps": 470, "total_steps": 996, "loss": 0.7431, "learning_rate": 5.52475476585336e-07, "epoch": 1.4145974416854779, "percentage": 47.19, "elapsed_time": "2:07:23", "remaining_time": "2:22:33"}
{"current_steps": 475, "total_steps": 996, "loss": 0.7467, "learning_rate": 5.445476444014591e-07, "epoch": 1.4296463506395787, "percentage": 47.69, "elapsed_time": "2:08:29", "remaining_time": "2:20:55"}
{"current_steps": 480, "total_steps": 996, "loss": 0.7494, "learning_rate": 5.366085064127734e-07, "epoch": 1.4446952595936795, "percentage": 48.19, "elapsed_time": "2:09:34", "remaining_time": "2:19:17"}
{"current_steps": 485, "total_steps": 996, "loss": 0.7488, "learning_rate": 5.286600775034699e-07, "epoch": 1.4597441685477803, "percentage": 48.69, "elapsed_time": "2:10:39", "remaining_time": "2:17:39"}
{"current_steps": 490, "total_steps": 996, "loss": 0.7455, "learning_rate": 5.207043749156944e-07, "epoch": 1.4747930775018812, "percentage": 49.2, "elapsed_time": "2:11:45", "remaining_time": "2:16:03"}
{"current_steps": 495, "total_steps": 996, "loss": 0.7245, "learning_rate": 5.127434177375893e-07, "epoch": 1.489841986455982, "percentage": 49.7, "elapsed_time": "2:12:50", "remaining_time": "2:14:27"}
{"current_steps": 500, "total_steps": 996, "loss": 0.7373, "learning_rate": 5.047792263908659e-07, "epoch": 1.5048908954100828, "percentage": 50.2, "elapsed_time": "2:14:06", "remaining_time": "2:13:02"}
{"current_steps": 500, "total_steps": 996, "eval_loss": 0.7960706949234009, "epoch": 1.5048908954100828, "percentage": 50.2, "elapsed_time": "2:16:51", "remaining_time": "2:15:45"}
{"current_steps": 505, "total_steps": 996, "loss": 0.7177, "learning_rate": 4.968138221180401e-07, "epoch": 1.5199398043641836, "percentage": 50.7, "elapsed_time": "2:17:57", "remaining_time": "2:14:07"}
{"current_steps": 510, "total_steps": 996, "loss": 0.7274, "learning_rate": 4.888492264694565e-07, "epoch": 1.5349887133182845, "percentage": 51.2, "elapsed_time": "2:19:03", "remaining_time": "2:12:30"}
{"current_steps": 515, "total_steps": 996, "loss": 0.7248, "learning_rate": 4.808874607902397e-07, "epoch": 1.5500376222723853, "percentage": 51.71, "elapsed_time": "2:20:08", "remaining_time": "2:10:53"}
{"current_steps": 520, "total_steps": 996, "loss": 0.7228, "learning_rate": 4.7293054570729126e-07, "epoch": 1.565086531226486, "percentage": 52.21, "elapsed_time": "2:21:14", "remaining_time": "2:09:17"}
{"current_steps": 525, "total_steps": 996, "loss": 0.7345, "learning_rate": 4.649805006164743e-07, "epoch": 1.580135440180587, "percentage": 52.71, "elapsed_time": "2:22:20", "remaining_time": "2:07:41"}
{"current_steps": 530, "total_steps": 996, "loss": 0.7336, "learning_rate": 4.5703934317010727e-07, "epoch": 1.5951843491346878, "percentage": 53.21, "elapsed_time": "2:23:25", "remaining_time": "2:06:06"}
{"current_steps": 535, "total_steps": 996, "loss": 0.7402, "learning_rate": 4.491090887649024e-07, "epoch": 1.6102332580887886, "percentage": 53.71, "elapsed_time": "2:24:31", "remaining_time": "2:04:31"}
{"current_steps": 540, "total_steps": 996, "loss": 0.7417, "learning_rate": 4.4119175003047407e-07, "epoch": 1.6252821670428894, "percentage": 54.22, "elapsed_time": "2:25:36", "remaining_time": "2:02:57"}
{"current_steps": 545, "total_steps": 996, "loss": 0.7414, "learning_rate": 4.3328933631855195e-07, "epoch": 1.6403310759969902, "percentage": 54.72, "elapsed_time": "2:26:42", "remaining_time": "2:01:24"}
{"current_steps": 550, "total_steps": 996, "loss": 0.7145, "learning_rate": 4.2540385319302524e-07, "epoch": 1.655379984951091, "percentage": 55.22, "elapsed_time": "2:27:48", "remaining_time": "1:59:51"}
{"current_steps": 550, "total_steps": 996, "eval_loss": 0.7923677563667297, "epoch": 1.655379984951091, "percentage": 55.22, "elapsed_time": "2:30:32", "remaining_time": "2:02:04"}
{"current_steps": 555, "total_steps": 996, "loss": 0.736, "learning_rate": 4.175373019209468e-07, "epoch": 1.670428893905192, "percentage": 55.72, "elapsed_time": "2:31:38", "remaining_time": "2:00:29"}
{"current_steps": 560, "total_steps": 996, "loss": 0.7271, "learning_rate": 4.0969167896463046e-07, "epoch": 1.6854778028592927, "percentage": 56.22, "elapsed_time": "2:32:44", "remaining_time": "1:58:55"}
{"current_steps": 565, "total_steps": 996, "loss": 0.7381, "learning_rate": 4.018689754749648e-07, "epoch": 1.7005267118133935, "percentage": 56.73, "elapsed_time": "2:33:50", "remaining_time": "1:57:21"}
{"current_steps": 570, "total_steps": 996, "loss": 0.7131, "learning_rate": 3.9407117678607756e-07, "epoch": 1.7155756207674944, "percentage": 57.23, "elapsed_time": "2:34:55", "remaining_time": "1:55:46"}
{"current_steps": 575, "total_steps": 996, "loss": 0.7202, "learning_rate": 3.8630026191147405e-07, "epoch": 1.7306245297215952, "percentage": 57.73, "elapsed_time": "2:35:59", "remaining_time": "1:54:13"}
{"current_steps": 580, "total_steps": 996, "loss": 0.7279, "learning_rate": 3.78558203041782e-07, "epoch": 1.745673438675696, "percentage": 58.23, "elapsed_time": "2:37:05", "remaining_time": "1:52:40"}
{"current_steps": 585, "total_steps": 996, "loss": 0.7217, "learning_rate": 3.7084696504422525e-07, "epoch": 1.7607223476297968, "percentage": 58.73, "elapsed_time": "2:38:11", "remaining_time": "1:51:08"}
{"current_steps": 590, "total_steps": 996, "loss": 0.7405, "learning_rate": 3.6316850496395855e-07, "epoch": 1.7757712565838977, "percentage": 59.24, "elapsed_time": "2:39:16", "remaining_time": "1:49:35"}
{"current_steps": 595, "total_steps": 996, "loss": 0.7349, "learning_rate": 3.555247715273867e-07, "epoch": 1.7908201655379985, "percentage": 59.74, "elapsed_time": "2:40:21", "remaining_time": "1:48:04"}
{"current_steps": 600, "total_steps": 996, "loss": 0.7176, "learning_rate": 3.4791770464759347e-07, "epoch": 1.8058690744920993, "percentage": 60.24, "elapsed_time": "2:41:26", "remaining_time": "1:46:32"}
{"current_steps": 600, "total_steps": 996, "eval_loss": 0.7886707186698914, "epoch": 1.8058690744920993, "percentage": 60.24, "elapsed_time": "2:44:10", "remaining_time": "1:48:21"}
{"current_steps": 605, "total_steps": 996, "loss": 0.7286, "learning_rate": 3.4034923493201007e-07, "epoch": 1.8209179834462002, "percentage": 60.74, "elapsed_time": "2:45:16", "remaining_time": "1:46:48"}
{"current_steps": 610, "total_steps": 996, "loss": 0.7274, "learning_rate": 3.3282128319244237e-07, "epoch": 1.835966892400301, "percentage": 61.24, "elapsed_time": "2:46:21", "remaining_time": "1:45:16"}
{"current_steps": 615, "total_steps": 996, "loss": 0.7503, "learning_rate": 3.2533575995758694e-07, "epoch": 1.8510158013544018, "percentage": 61.75, "elapsed_time": "2:47:26", "remaining_time": "1:43:43"}
{"current_steps": 620, "total_steps": 996, "loss": 0.7278, "learning_rate": 3.178945649881543e-07, "epoch": 1.8660647103085026, "percentage": 62.25, "elapsed_time": "2:48:31", "remaining_time": "1:42:12"}
{"current_steps": 625, "total_steps": 996, "loss": 0.7189, "learning_rate": 3.1049958679472645e-07, "epoch": 1.8811136192626035, "percentage": 62.75, "elapsed_time": "2:49:37", "remaining_time": "1:40:41"}
{"current_steps": 630, "total_steps": 996, "loss": 0.7344, "learning_rate": 3.031527021584701e-07, "epoch": 1.8961625282167043, "percentage": 63.25, "elapsed_time": "2:50:43", "remaining_time": "1:39:10"}
{"current_steps": 635, "total_steps": 996, "loss": 0.7278, "learning_rate": 2.9585577565482484e-07, "epoch": 1.911211437170805, "percentage": 63.76, "elapsed_time": "2:51:47", "remaining_time": "1:37:40"}
{"current_steps": 640, "total_steps": 996, "loss": 0.7482, "learning_rate": 2.886106591802908e-07, "epoch": 1.926260346124906, "percentage": 64.26, "elapsed_time": "2:52:53", "remaining_time": "1:36:10"}
{"current_steps": 645, "total_steps": 996, "loss": 0.71, "learning_rate": 2.814191914824332e-07, "epoch": 1.9413092550790068, "percentage": 64.76, "elapsed_time": "2:53:59", "remaining_time": "1:34:40"}
{"current_steps": 650, "total_steps": 996, "loss": 0.7384, "learning_rate": 2.7428319769322415e-07, "epoch": 1.9563581640331076, "percentage": 65.26, "elapsed_time": "2:55:05", "remaining_time": "1:33:12"}
{"current_steps": 650, "total_steps": 996, "eval_loss": 0.7857681512832642, "epoch": 1.9563581640331076, "percentage": 65.26, "elapsed_time": "2:57:49", "remaining_time": "1:34:39"}
{"current_steps": 655, "total_steps": 996, "loss": 0.7152, "learning_rate": 2.672044888658399e-07, "epoch": 1.9714070729872084, "percentage": 65.76, "elapsed_time": "2:58:54", "remaining_time": "1:33:08"}
{"current_steps": 660, "total_steps": 996, "loss": 0.715, "learning_rate": 2.6018486151503213e-07, "epoch": 1.9864559819413092, "percentage": 66.27, "elapsed_time": "2:59:59", "remaining_time": "1:31:38"}
{"current_steps": 665, "total_steps": 996, "loss": 0.7306, "learning_rate": 2.532260971611867e-07, "epoch": 2.00150489089541, "percentage": 66.77, "elapsed_time": "3:01:04", "remaining_time": "1:30:07"}
{"current_steps": 670, "total_steps": 996, "loss": 0.6819, "learning_rate": 2.4632996187819034e-07, "epoch": 2.016553799849511, "percentage": 67.27, "elapsed_time": "3:02:09", "remaining_time": "1:28:38"}
{"current_steps": 675, "total_steps": 996, "loss": 0.6779, "learning_rate": 2.394982058452165e-07, "epoch": 2.0316027088036117, "percentage": 67.77, "elapsed_time": "3:03:14", "remaining_time": "1:27:08"}
{"current_steps": 680, "total_steps": 996, "loss": 0.6818, "learning_rate": 2.3273256290254402e-07, "epoch": 2.0466516177577128, "percentage": 68.27, "elapsed_time": "3:04:21", "remaining_time": "1:25:40"}
{"current_steps": 685, "total_steps": 996, "loss": 0.701, "learning_rate": 2.2603475011152517e-07, "epoch": 2.0617005267118134, "percentage": 68.78, "elapsed_time": "3:05:26", "remaining_time": "1:24:11"}
{"current_steps": 690, "total_steps": 996, "loss": 0.6814, "learning_rate": 2.1940646731880885e-07, "epoch": 2.0767494356659144, "percentage": 69.28, "elapsed_time": "3:06:32", "remaining_time": "1:22:43"}
{"current_steps": 695, "total_steps": 996, "loss": 0.6986, "learning_rate": 2.1284939672493506e-07, "epoch": 2.091798344620015, "percentage": 69.78, "elapsed_time": "3:07:37", "remaining_time": "1:21:15"}
{"current_steps": 700, "total_steps": 996, "loss": 0.6877, "learning_rate": 2.0636520245740708e-07, "epoch": 2.106847253574116, "percentage": 70.28, "elapsed_time": "3:08:43", "remaining_time": "1:19:48"}
{"current_steps": 700, "total_steps": 996, "eval_loss": 0.7906577587127686, "epoch": 2.106847253574116, "percentage": 70.28, "elapsed_time": "3:11:27", "remaining_time": "1:20:57"}
{"current_steps": 705, "total_steps": 996, "loss": 0.6616, "learning_rate": 1.9995553014834986e-07, "epoch": 2.1218961625282167, "percentage": 70.78, "elapsed_time": "3:12:33", "remaining_time": "1:19:28"}
{"current_steps": 710, "total_steps": 996, "loss": 0.6807, "learning_rate": 1.9362200651686406e-07, "epoch": 2.1369450714823177, "percentage": 71.29, "elapsed_time": "3:13:38", "remaining_time": "1:18:00"}
{"current_steps": 715, "total_steps": 996, "loss": 0.6789, "learning_rate": 1.873662389561771e-07, "epoch": 2.1519939804364183, "percentage": 71.79, "elapsed_time": "3:14:44", "remaining_time": "1:16:31"}
{"current_steps": 720, "total_steps": 996, "loss": 0.6798, "learning_rate": 1.8118981512570254e-07, "epoch": 2.1670428893905194, "percentage": 72.29, "elapsed_time": "3:15:49", "remaining_time": "1:15:04"}
{"current_steps": 725, "total_steps": 996, "loss": 0.6752, "learning_rate": 1.750943025481046e-07, "epoch": 2.18209179834462, "percentage": 72.79, "elapsed_time": "3:16:55", "remaining_time": "1:13:36"}
{"current_steps": 730, "total_steps": 996, "loss": 0.6593, "learning_rate": 1.6908124821147517e-07, "epoch": 2.197140707298721, "percentage": 73.29, "elapsed_time": "3:18:00", "remaining_time": "1:12:09"}
{"current_steps": 735, "total_steps": 996, "loss": 0.6708, "learning_rate": 1.631521781767214e-07, "epoch": 2.2121896162528216, "percentage": 73.8, "elapsed_time": "3:19:06", "remaining_time": "1:10:42"}
{"current_steps": 740, "total_steps": 996, "loss": 0.67, "learning_rate": 1.5730859719026535e-07, "epoch": 2.2272385252069227, "percentage": 74.3, "elapsed_time": "3:20:12", "remaining_time": "1:09:15"}
{"current_steps": 745, "total_steps": 996, "loss": 0.668, "learning_rate": 1.5155198830215144e-07, "epoch": 2.2422874341610233, "percentage": 74.8, "elapsed_time": "3:21:18", "remaining_time": "1:07:49"}
{"current_steps": 750, "total_steps": 996, "loss": 0.6796, "learning_rate": 1.4588381248966185e-07, "epoch": 2.2573363431151243, "percentage": 75.3, "elapsed_time": "3:22:23", "remaining_time": "1:06:23"}
{"current_steps": 750, "total_steps": 996, "eval_loss": 0.7899430990219116, "epoch": 2.2573363431151243, "percentage": 75.3, "elapsed_time": "3:25:08", "remaining_time": "1:07:17"}
{"current_steps": 755, "total_steps": 996, "loss": 0.6911, "learning_rate": 1.4030550828653354e-07, "epoch": 2.272385252069225, "percentage": 75.8, "elapsed_time": "3:26:12", "remaining_time": "1:05:49"}
{"current_steps": 760, "total_steps": 996, "loss": 0.6795, "learning_rate": 1.3481849141786977e-07, "epoch": 2.287434161023326, "percentage": 76.31, "elapsed_time": "3:27:17", "remaining_time": "1:04:22"}
{"current_steps": 765, "total_steps": 996, "loss": 0.6694, "learning_rate": 1.294241544408425e-07, "epoch": 2.3024830699774266, "percentage": 76.81, "elapsed_time": "3:28:23", "remaining_time": "1:02:55"}
{"current_steps": 770, "total_steps": 996, "loss": 0.7048, "learning_rate": 1.241238663912727e-07, "epoch": 2.3175319789315276, "percentage": 77.31, "elapsed_time": "3:29:29", "remaining_time": "1:01:29"}
{"current_steps": 775, "total_steps": 996, "loss": 0.6814, "learning_rate": 1.1891897243618183e-07, "epoch": 2.3325808878856282, "percentage": 77.81, "elapsed_time": "3:30:34", "remaining_time": "1:00:02"}
{"current_steps": 780, "total_steps": 996, "loss": 0.6822, "learning_rate": 1.1381079353239915e-07, "epoch": 2.3476297968397293, "percentage": 78.31, "elapsed_time": "3:31:40", "remaining_time": "0:58:36"}
{"current_steps": 785, "total_steps": 996, "loss": 0.689, "learning_rate": 1.0880062609131485e-07, "epoch": 2.36267870579383, "percentage": 78.82, "elapsed_time": "3:32:45", "remaining_time": "0:57:11"}
{"current_steps": 790, "total_steps": 996, "loss": 0.6743, "learning_rate": 1.0388974164986247e-07, "epoch": 2.377727614747931, "percentage": 79.32, "elapsed_time": "3:33:50", "remaining_time": "0:55:45"}
{"current_steps": 795, "total_steps": 996, "loss": 0.6926, "learning_rate": 9.907938654781306e-08, "epoch": 2.3927765237020315, "percentage": 79.82, "elapsed_time": "3:34:56", "remaining_time": "0:54:20"}
{"current_steps": 800, "total_steps": 996, "loss": 0.6837, "learning_rate": 9.437078161146589e-08, "epoch": 2.4078254326561326, "percentage": 80.32, "elapsed_time": "3:36:01", "remaining_time": "0:52:55"}
{"current_steps": 800, "total_steps": 996, "eval_loss": 0.788821280002594, "epoch": 2.4078254326561326, "percentage": 80.32, "elapsed_time": "3:38:46", "remaining_time": "0:53:35"}
{"current_steps": 805, "total_steps": 996, "loss": 0.6791, "learning_rate": 8.976512184381246e-08, "epoch": 2.422874341610233, "percentage": 80.82, "elapsed_time": "3:39:50", "remaining_time": "0:52:09"}
{"current_steps": 810, "total_steps": 996, "loss": 0.6858, "learning_rate": 8.526357612125573e-08, "epoch": 2.4379232505643342, "percentage": 81.33, "elapsed_time": "3:40:56", "remaining_time": "0:50:44"}
{"current_steps": 815, "total_steps": 996, "loss": 0.6946, "learning_rate": 8.086728689695921e-08, "epoch": 2.452972159518435, "percentage": 81.83, "elapsed_time": "3:42:02", "remaining_time": "0:49:18"}
{"current_steps": 820, "total_steps": 996, "loss": 0.6841, "learning_rate": 7.657736991090263e-08, "epoch": 2.468021068472536, "percentage": 82.33, "elapsed_time": "3:43:06", "remaining_time": "0:47:53"}
{"current_steps": 825, "total_steps": 996, "loss": 0.6812, "learning_rate": 7.239491390671631e-08, "epoch": 2.4830699774266365, "percentage": 82.83, "elapsed_time": "3:44:12", "remaining_time": "0:46:28"}
{"current_steps": 830, "total_steps": 996, "loss": 0.6757, "learning_rate": 6.832098035536759e-08, "epoch": 2.4981188863807375, "percentage": 83.33, "elapsed_time": "3:45:17", "remaining_time": "0:45:03"}
{"current_steps": 835, "total_steps": 996, "loss": 0.6754, "learning_rate": 6.435660318576935e-08, "epoch": 2.513167795334838, "percentage": 83.84, "elapsed_time": "3:46:23", "remaining_time": "0:43:39"}
{"current_steps": 840, "total_steps": 996, "loss": 0.6729, "learning_rate": 6.0502788522377e-08, "epoch": 2.528216704288939, "percentage": 84.34, "elapsed_time": "3:47:29", "remaining_time": "0:42:14"}
{"current_steps": 845, "total_steps": 996, "loss": 0.6832, "learning_rate": 5.676051442984325e-08, "epoch": 2.54326561324304, "percentage": 84.84, "elapsed_time": "3:48:34", "remaining_time": "0:40:50"}
{"current_steps": 850, "total_steps": 996, "loss": 0.6653, "learning_rate": 5.313073066479379e-08, "epoch": 2.558314522197141, "percentage": 85.34, "elapsed_time": "3:49:40", "remaining_time": "0:39:26"}
{"current_steps": 850, "total_steps": 996, "eval_loss": 0.7885056138038635, "epoch": 2.558314522197141, "percentage": 85.34, "elapsed_time": "3:52:24", "remaining_time": "0:39:55"}
{"current_steps": 855, "total_steps": 996, "loss": 0.6845, "learning_rate": 4.961435843478751e-08, "epoch": 2.5733634311512414, "percentage": 85.84, "elapsed_time": "3:53:28", "remaining_time": "0:38:30"}
{"current_steps": 860, "total_steps": 996, "loss": 0.6734, "learning_rate": 4.621229016452155e-08, "epoch": 2.5884123401053425, "percentage": 86.35, "elapsed_time": "3:54:33", "remaining_time": "0:37:05"}
{"current_steps": 865, "total_steps": 996, "loss": 0.6777, "learning_rate": 4.2925389269341916e-08, "epoch": 2.603461249059443, "percentage": 86.85, "elapsed_time": "3:55:39", "remaining_time": "0:35:41"}
{"current_steps": 870, "total_steps": 996, "loss": 0.6719, "learning_rate": 3.975448993611652e-08, "epoch": 2.618510158013544, "percentage": 87.35, "elapsed_time": "3:56:45", "remaining_time": "0:34:17"}
{"current_steps": 875, "total_steps": 996, "loss": 0.6779, "learning_rate": 3.67003969115251e-08, "epoch": 2.6335590669676447, "percentage": 87.85, "elapsed_time": "3:57:49", "remaining_time": "0:32:53"}
{"current_steps": 880, "total_steps": 996, "loss": 0.6781, "learning_rate": 3.376388529782215e-08, "epoch": 2.648607975921746, "percentage": 88.35, "elapsed_time": "3:58:55", "remaining_time": "0:31:29"}
{"current_steps": 885, "total_steps": 996, "loss": 0.6942, "learning_rate": 3.094570035612226e-08, "epoch": 2.6636568848758464, "percentage": 88.86, "elapsed_time": "4:00:00", "remaining_time": "0:30:06"}
{"current_steps": 890, "total_steps": 996, "loss": 0.6914, "learning_rate": 2.8246557317259723e-08, "epoch": 2.6787057938299474, "percentage": 89.36, "elapsed_time": "4:01:05", "remaining_time": "0:28:42"}
{"current_steps": 895, "total_steps": 996, "loss": 0.6892, "learning_rate": 2.5667141200268694e-08, "epoch": 2.693754702784048, "percentage": 89.86, "elapsed_time": "4:02:10", "remaining_time": "0:27:19"}
{"current_steps": 900, "total_steps": 996, "loss": 0.6563, "learning_rate": 2.3208106638531842e-08, "epoch": 2.708803611738149, "percentage": 90.36, "elapsed_time": "4:03:14", "remaining_time": "0:25:56"}
{"current_steps": 900, "total_steps": 996, "eval_loss": 0.7879343032836914, "epoch": 2.708803611738149, "percentage": 90.36, "elapsed_time": "4:05:59", "remaining_time": "0:26:14"}
{"current_steps": 905, "total_steps": 996, "loss": 0.6736, "learning_rate": 2.087007771363969e-08, "epoch": 2.7238525206922497, "percentage": 90.86, "elapsed_time": "4:07:04", "remaining_time": "0:24:50"}
{"current_steps": 910, "total_steps": 996, "loss": 0.6797, "learning_rate": 1.8653647797004236e-08, "epoch": 2.7389014296463507, "percentage": 91.37, "elapsed_time": "4:08:09", "remaining_time": "0:23:27"}
{"current_steps": 915, "total_steps": 996, "loss": 0.6666, "learning_rate": 1.655937939926655e-08, "epoch": 2.7539503386004514, "percentage": 91.87, "elapsed_time": "4:09:14", "remaining_time": "0:22:03"}
{"current_steps": 920, "total_steps": 996, "loss": 0.6797, "learning_rate": 1.4587804027536454e-08, "epoch": 2.7689992475545524, "percentage": 92.37, "elapsed_time": "4:10:20", "remaining_time": "0:20:40"}
{"current_steps": 925, "total_steps": 996, "loss": 0.6643, "learning_rate": 1.2739422050500436e-08, "epoch": 2.784048156508653, "percentage": 92.87, "elapsed_time": "4:11:25", "remaining_time": "0:19:17"}
{"current_steps": 930, "total_steps": 996, "loss": 0.6811, "learning_rate": 1.101470257143261e-08, "epoch": 2.799097065462754, "percentage": 93.37, "elapsed_time": "4:12:31", "remaining_time": "0:17:55"}
{"current_steps": 935, "total_steps": 996, "loss": 0.691, "learning_rate": 9.414083309140453e-09, "epoch": 2.8141459744168547, "percentage": 93.88, "elapsed_time": "4:13:36", "remaining_time": "0:16:32"}
{"current_steps": 940, "total_steps": 996, "loss": 0.6758, "learning_rate": 7.93797048687539e-09, "epoch": 2.8291948833709557, "percentage": 94.38, "elapsed_time": "4:14:41", "remaining_time": "0:15:10"}
{"current_steps": 945, "total_steps": 996, "loss": 0.6712, "learning_rate": 6.5867387292369295e-09, "epoch": 2.8442437923250563, "percentage": 94.88, "elapsed_time": "4:15:45", "remaining_time": "0:13:48"}
{"current_steps": 950, "total_steps": 996, "loss": 0.6829, "learning_rate": 5.360730967096272e-09, "epoch": 2.8592927012791574, "percentage": 95.38, "elapsed_time": "4:16:51", "remaining_time": "0:12:26"}
{"current_steps": 950, "total_steps": 996, "eval_loss": 0.7878710031509399, "epoch": 2.8592927012791574, "percentage": 95.38, "elapsed_time": "4:19:35", "remaining_time": "0:12:34"}
{"current_steps": 955, "total_steps": 996, "loss": 0.6704, "learning_rate": 4.260258350563317e-09, "epoch": 2.874341610233258, "percentage": 95.88, "elapsed_time": "4:20:41", "remaining_time": "0:11:11"}
{"current_steps": 960, "total_steps": 996, "loss": 0.6802, "learning_rate": 3.285600170019609e-09, "epoch": 2.889390519187359, "percentage": 96.39, "elapsed_time": "4:21:47", "remaining_time": "0:09:49"}
{"current_steps": 965, "total_steps": 996, "loss": 0.6778, "learning_rate": 2.437003785236702e-09, "epoch": 2.9044394281414596, "percentage": 96.89, "elapsed_time": "4:22:51", "remaining_time": "0:08:26"}
{"current_steps": 970, "total_steps": 996, "loss": 0.6714, "learning_rate": 1.714684562598545e-09, "epoch": 2.9194883370955607, "percentage": 97.39, "elapsed_time": "4:23:56", "remaining_time": "0:07:04"}
{"current_steps": 975, "total_steps": 996, "loss": 0.6755, "learning_rate": 1.1188258204433144e-09, "epoch": 2.9345372460496613, "percentage": 97.89, "elapsed_time": "4:25:02", "remaining_time": "0:05:42"}
{"current_steps": 980, "total_steps": 996, "loss": 0.6792, "learning_rate": 6.49578782538851e-10, "epoch": 2.9495861550037623, "percentage": 98.39, "elapsed_time": "4:26:07", "remaining_time": "0:04:20"}
{"current_steps": 985, "total_steps": 996, "loss": 0.6723, "learning_rate": 3.070625397031401e-10, "epoch": 2.964635063957863, "percentage": 98.9, "elapsed_time": "4:27:13", "remaining_time": "0:02:59"}
{"current_steps": 990, "total_steps": 996, "loss": 0.6766, "learning_rate": 9.136401958059759e-11, "epoch": 2.979683972911964, "percentage": 99.4, "elapsed_time": "4:28:18", "remaining_time": "0:01:37"}
{"current_steps": 995, "total_steps": 996, "loss": 0.6835, "learning_rate": 2.5379645800516215e-12, "epoch": 2.9947328818660646, "percentage": 99.9, "elapsed_time": "4:29:24", "remaining_time": "0:00:16"}
{"current_steps": 996, "total_steps": 996, "epoch": 2.9977426636568847, "percentage": 100.0, "elapsed_time": "4:30:10", "remaining_time": "0:00:00"}