htlou's picture
Upload folder using huggingface_hub
5bec34e verified
{"current_steps": 5, "total_steps": 441, "loss": 1.7268, "learning_rate": 5e-07, "epoch": 0.0338409475465313, "percentage": 1.13, "elapsed_time": "0:01:09", "remaining_time": "1:40:22"}
{"current_steps": 10, "total_steps": 441, "loss": 1.5925, "learning_rate": 1e-06, "epoch": 0.0676818950930626, "percentage": 2.27, "elapsed_time": "0:02:14", "remaining_time": "1:36:30"}
{"current_steps": 15, "total_steps": 441, "loss": 1.269, "learning_rate": 9.996679701338661e-07, "epoch": 0.10152284263959391, "percentage": 3.4, "elapsed_time": "0:03:19", "remaining_time": "1:34:23"}
{"current_steps": 20, "total_steps": 441, "loss": 1.1436, "learning_rate": 9.986723215107924e-07, "epoch": 0.1353637901861252, "percentage": 4.54, "elapsed_time": "0:04:25", "remaining_time": "1:33:08"}
{"current_steps": 25, "total_steps": 441, "loss": 1.0624, "learning_rate": 9.97014376471095e-07, "epoch": 0.1692047377326565, "percentage": 5.67, "elapsed_time": "0:05:30", "remaining_time": "1:31:40"}
{"current_steps": 30, "total_steps": 441, "loss": 1.0302, "learning_rate": 9.946963369638524e-07, "epoch": 0.20304568527918782, "percentage": 6.8, "elapsed_time": "0:06:35", "remaining_time": "1:30:16"}
{"current_steps": 35, "total_steps": 441, "loss": 1.0156, "learning_rate": 9.917212816224536e-07, "epoch": 0.23688663282571912, "percentage": 7.94, "elapsed_time": "0:07:40", "remaining_time": "1:29:02"}
{"current_steps": 40, "total_steps": 441, "loss": 0.9731, "learning_rate": 9.880931616758056e-07, "epoch": 0.2707275803722504, "percentage": 9.07, "elapsed_time": "0:08:46", "remaining_time": "1:27:59"}
{"current_steps": 45, "total_steps": 441, "loss": 0.9453, "learning_rate": 9.838167957006293e-07, "epoch": 0.30456852791878175, "percentage": 10.2, "elapsed_time": "0:09:52", "remaining_time": "1:26:57"}
{"current_steps": 50, "total_steps": 441, "loss": 0.9333, "learning_rate": 9.788978632218138e-07, "epoch": 0.338409475465313, "percentage": 11.34, "elapsed_time": "0:10:59", "remaining_time": "1:25:54"}
{"current_steps": 50, "total_steps": 441, "eval_loss": 0.9387685656547546, "epoch": 0.338409475465313, "percentage": 11.34, "elapsed_time": "0:12:12", "remaining_time": "1:35:31"}
{"current_steps": 55, "total_steps": 441, "loss": 0.933, "learning_rate": 9.73342897169329e-07, "epoch": 0.37225042301184436, "percentage": 12.47, "elapsed_time": "0:13:18", "remaining_time": "1:33:22"}
{"current_steps": 60, "total_steps": 441, "loss": 0.9244, "learning_rate": 9.671592752017137e-07, "epoch": 0.40609137055837563, "percentage": 13.61, "elapsed_time": "0:14:23", "remaining_time": "1:31:23"}
{"current_steps": 65, "total_steps": 441, "loss": 0.9217, "learning_rate": 9.603552099076648e-07, "epoch": 0.43993231810490696, "percentage": 14.74, "elapsed_time": "0:15:28", "remaining_time": "1:29:33"}
{"current_steps": 70, "total_steps": 441, "loss": 0.9251, "learning_rate": 9.52939737898737e-07, "epoch": 0.47377326565143824, "percentage": 15.87, "elapsed_time": "0:16:34", "remaining_time": "1:27:48"}
{"current_steps": 75, "total_steps": 441, "loss": 0.8951, "learning_rate": 9.449227078076443e-07, "epoch": 0.5076142131979695, "percentage": 17.01, "elapsed_time": "0:17:39", "remaining_time": "1:26:10"}
{"current_steps": 80, "total_steps": 441, "loss": 0.893, "learning_rate": 9.363147672080985e-07, "epoch": 0.5414551607445008, "percentage": 18.14, "elapsed_time": "0:18:44", "remaining_time": "1:24:32"}
{"current_steps": 85, "total_steps": 441, "loss": 0.8702, "learning_rate": 9.271273484735592e-07, "epoch": 0.5752961082910322, "percentage": 19.27, "elapsed_time": "0:19:49", "remaining_time": "1:23:02"}
{"current_steps": 90, "total_steps": 441, "loss": 0.8931, "learning_rate": 9.173726535936766e-07, "epoch": 0.6091370558375635, "percentage": 20.41, "elapsed_time": "0:20:54", "remaining_time": "1:21:33"}
{"current_steps": 95, "total_steps": 441, "loss": 0.8689, "learning_rate": 9.070636379685915e-07, "epoch": 0.6429780033840947, "percentage": 21.54, "elapsed_time": "0:22:00", "remaining_time": "1:20:08"}
{"current_steps": 100, "total_steps": 441, "loss": 0.8736, "learning_rate": 8.962139932026156e-07, "epoch": 0.676818950930626, "percentage": 22.68, "elapsed_time": "0:23:05", "remaining_time": "1:18:45"}
{"current_steps": 100, "total_steps": 441, "eval_loss": 0.8820675015449524, "epoch": 0.676818950930626, "percentage": 22.68, "elapsed_time": "0:24:18", "remaining_time": "1:22:55"}
{"current_steps": 105, "total_steps": 441, "loss": 0.8658, "learning_rate": 8.848381289201459e-07, "epoch": 0.7106598984771574, "percentage": 23.81, "elapsed_time": "0:25:24", "remaining_time": "1:21:18"}
{"current_steps": 110, "total_steps": 441, "loss": 0.85, "learning_rate": 8.72951153627962e-07, "epoch": 0.7445008460236887, "percentage": 24.94, "elapsed_time": "0:26:29", "remaining_time": "1:19:43"}
{"current_steps": 115, "total_steps": 441, "loss": 0.8831, "learning_rate": 8.605688546493238e-07, "epoch": 0.7783417935702199, "percentage": 26.08, "elapsed_time": "0:27:34", "remaining_time": "1:18:11"}
{"current_steps": 120, "total_steps": 441, "loss": 0.8542, "learning_rate": 8.477076771565202e-07, "epoch": 0.8121827411167513, "percentage": 27.21, "elapsed_time": "0:28:39", "remaining_time": "1:16:40"}
{"current_steps": 125, "total_steps": 441, "loss": 0.8538, "learning_rate": 8.343847023297169e-07, "epoch": 0.8460236886632826, "percentage": 28.34, "elapsed_time": "0:29:45", "remaining_time": "1:15:12"}
{"current_steps": 130, "total_steps": 441, "loss": 0.8568, "learning_rate": 8.206176246711065e-07, "epoch": 0.8798646362098139, "percentage": 29.48, "elapsed_time": "0:30:50", "remaining_time": "1:13:47"}
{"current_steps": 135, "total_steps": 441, "loss": 0.8566, "learning_rate": 8.064247285044972e-07, "epoch": 0.9137055837563451, "percentage": 30.61, "elapsed_time": "0:31:56", "remaining_time": "1:12:24"}
{"current_steps": 140, "total_steps": 441, "loss": 0.8671, "learning_rate": 7.918248636915459e-07, "epoch": 0.9475465313028765, "percentage": 31.75, "elapsed_time": "0:33:01", "remaining_time": "1:11:00"}
{"current_steps": 145, "total_steps": 441, "loss": 0.8607, "learning_rate": 7.768374205968906e-07, "epoch": 0.9813874788494078, "percentage": 32.88, "elapsed_time": "0:34:07", "remaining_time": "1:09:39"}
{"current_steps": 150, "total_steps": 441, "loss": 0.8459, "learning_rate": 7.614823043354285e-07, "epoch": 1.015228426395939, "percentage": 34.01, "elapsed_time": "0:35:13", "remaining_time": "1:08:19"}
{"current_steps": 150, "total_steps": 441, "eval_loss": 0.8576342463493347, "epoch": 1.015228426395939, "percentage": 34.01, "elapsed_time": "0:36:26", "remaining_time": "1:10:42"}
{"current_steps": 155, "total_steps": 441, "loss": 0.7928, "learning_rate": 7.457799083359471e-07, "epoch": 1.0490693739424704, "percentage": 35.15, "elapsed_time": "0:37:32", "remaining_time": "1:09:15"}
{"current_steps": 160, "total_steps": 441, "loss": 0.7801, "learning_rate": 7.297510872562131e-07, "epoch": 1.0829103214890017, "percentage": 36.28, "elapsed_time": "0:38:37", "remaining_time": "1:07:50"}
{"current_steps": 165, "total_steps": 441, "loss": 0.7915, "learning_rate": 7.134171292854955e-07, "epoch": 1.116751269035533, "percentage": 37.41, "elapsed_time": "0:39:42", "remaining_time": "1:06:24"}
{"current_steps": 170, "total_steps": 441, "loss": 0.7831, "learning_rate": 6.967997278713089e-07, "epoch": 1.1505922165820643, "percentage": 38.55, "elapsed_time": "0:40:47", "remaining_time": "1:05:01"}
{"current_steps": 175, "total_steps": 441, "loss": 0.7911, "learning_rate": 6.79920952907921e-07, "epoch": 1.1844331641285957, "percentage": 39.68, "elapsed_time": "0:41:52", "remaining_time": "1:03:39"}
{"current_steps": 180, "total_steps": 441, "loss": 0.7816, "learning_rate": 6.628032214248982e-07, "epoch": 1.218274111675127, "percentage": 40.82, "elapsed_time": "0:42:58", "remaining_time": "1:02:19"}
{"current_steps": 185, "total_steps": 441, "loss": 0.7742, "learning_rate": 6.454692678146119e-07, "epoch": 1.252115059221658, "percentage": 41.95, "elapsed_time": "0:44:04", "remaining_time": "1:00:59"}
{"current_steps": 190, "total_steps": 441, "loss": 0.7932, "learning_rate": 6.279421136382494e-07, "epoch": 1.2859560067681894, "percentage": 43.08, "elapsed_time": "0:45:09", "remaining_time": "0:59:39"}
{"current_steps": 195, "total_steps": 441, "loss": 0.7852, "learning_rate": 6.102450370504299e-07, "epoch": 1.3197969543147208, "percentage": 44.22, "elapsed_time": "0:46:14", "remaining_time": "0:58:20"}
{"current_steps": 200, "total_steps": 441, "loss": 0.7682, "learning_rate": 5.924015418830354e-07, "epoch": 1.353637901861252, "percentage": 45.35, "elapsed_time": "0:47:20", "remaining_time": "0:57:02"}
{"current_steps": 200, "total_steps": 441, "eval_loss": 0.8485246300697327, "epoch": 1.353637901861252, "percentage": 45.35, "elapsed_time": "0:48:33", "remaining_time": "0:58:30"}
{"current_steps": 205, "total_steps": 441, "loss": 0.7784, "learning_rate": 5.74435326429313e-07, "epoch": 1.3874788494077834, "percentage": 46.49, "elapsed_time": "0:49:39", "remaining_time": "0:57:09"}
{"current_steps": 210, "total_steps": 441, "loss": 0.7789, "learning_rate": 5.563702519697108e-07, "epoch": 1.4213197969543148, "percentage": 47.62, "elapsed_time": "0:50:44", "remaining_time": "0:55:49"}
{"current_steps": 215, "total_steps": 441, "loss": 0.7843, "learning_rate": 5.382303110812466e-07, "epoch": 1.455160744500846, "percentage": 48.75, "elapsed_time": "0:51:50", "remaining_time": "0:54:29"}
{"current_steps": 220, "total_steps": 441, "loss": 0.7734, "learning_rate": 5.200395957725005e-07, "epoch": 1.4890016920473772, "percentage": 49.89, "elapsed_time": "0:52:55", "remaining_time": "0:53:10"}
{"current_steps": 225, "total_steps": 441, "loss": 0.777, "learning_rate": 5.018222654865471e-07, "epoch": 1.5228426395939088, "percentage": 51.02, "elapsed_time": "0:54:01", "remaining_time": "0:51:51"}
{"current_steps": 230, "total_steps": 441, "loss": 0.7777, "learning_rate": 4.836025150143318e-07, "epoch": 1.5566835871404399, "percentage": 52.15, "elapsed_time": "0:55:06", "remaining_time": "0:50:33"}
{"current_steps": 235, "total_steps": 441, "loss": 0.7744, "learning_rate": 4.654045423610952e-07, "epoch": 1.5905245346869712, "percentage": 53.29, "elapsed_time": "0:56:12", "remaining_time": "0:49:16"}
{"current_steps": 240, "total_steps": 441, "loss": 0.7812, "learning_rate": 4.4725251660853357e-07, "epoch": 1.6243654822335025, "percentage": 54.42, "elapsed_time": "0:57:17", "remaining_time": "0:47:59"}
{"current_steps": 245, "total_steps": 441, "loss": 0.768, "learning_rate": 4.2917054581536926e-07, "epoch": 1.6582064297800339, "percentage": 55.56, "elapsed_time": "0:58:23", "remaining_time": "0:46:42"}
{"current_steps": 250, "total_steps": 441, "loss": 0.7797, "learning_rate": 4.1118264499897003e-07, "epoch": 1.6920473773265652, "percentage": 56.69, "elapsed_time": "0:59:28", "remaining_time": "0:45:26"}
{"current_steps": 250, "total_steps": 441, "eval_loss": 0.8384872078895569, "epoch": 1.6920473773265652, "percentage": 56.69, "elapsed_time": "1:00:42", "remaining_time": "0:46:22"}
{"current_steps": 255, "total_steps": 441, "loss": 0.7617, "learning_rate": 3.9331270424053616e-07, "epoch": 1.7258883248730963, "percentage": 57.82, "elapsed_time": "1:01:47", "remaining_time": "0:45:04"}
{"current_steps": 260, "total_steps": 441, "loss": 0.7687, "learning_rate": 3.755844569562191e-07, "epoch": 1.7597292724196278, "percentage": 58.96, "elapsed_time": "1:02:53", "remaining_time": "0:43:46"}
{"current_steps": 265, "total_steps": 441, "loss": 0.7602, "learning_rate": 3.580214483763093e-07, "epoch": 1.793570219966159, "percentage": 60.09, "elapsed_time": "1:03:58", "remaining_time": "0:42:29"}
{"current_steps": 270, "total_steps": 441, "loss": 0.7717, "learning_rate": 3.406470042743574e-07, "epoch": 1.8274111675126905, "percentage": 61.22, "elapsed_time": "1:05:04", "remaining_time": "0:41:12"}
{"current_steps": 275, "total_steps": 441, "loss": 0.7496, "learning_rate": 3.23484199987761e-07, "epoch": 1.8612521150592216, "percentage": 62.36, "elapsed_time": "1:06:10", "remaining_time": "0:39:56"}
{"current_steps": 280, "total_steps": 441, "loss": 0.7695, "learning_rate": 3.065558297709588e-07, "epoch": 1.895093062605753, "percentage": 63.49, "elapsed_time": "1:07:16", "remaining_time": "0:38:40"}
{"current_steps": 285, "total_steps": 441, "loss": 0.7628, "learning_rate": 2.898843765219388e-07, "epoch": 1.9289340101522843, "percentage": 64.63, "elapsed_time": "1:08:21", "remaining_time": "0:37:24"}
{"current_steps": 290, "total_steps": 441, "loss": 0.7732, "learning_rate": 2.7349198192226295e-07, "epoch": 1.9627749576988156, "percentage": 65.76, "elapsed_time": "1:09:26", "remaining_time": "0:36:09"}
{"current_steps": 295, "total_steps": 441, "loss": 0.7684, "learning_rate": 2.574004170302696e-07, "epoch": 1.996615905245347, "percentage": 66.89, "elapsed_time": "1:10:31", "remaining_time": "0:34:53"}
{"current_steps": 300, "total_steps": 441, "loss": 0.7246, "learning_rate": 2.4163105336650643e-07, "epoch": 2.030456852791878, "percentage": 68.03, "elapsed_time": "1:11:36", "remaining_time": "0:33:39"}
{"current_steps": 300, "total_steps": 441, "eval_loss": 0.8336632251739502, "epoch": 2.030456852791878, "percentage": 68.03, "elapsed_time": "1:12:49", "remaining_time": "0:34:13"}
{"current_steps": 305, "total_steps": 441, "loss": 0.7305, "learning_rate": 2.2620483452979887e-07, "epoch": 2.0642978003384096, "percentage": 69.16, "elapsed_time": "1:13:54", "remaining_time": "0:32:57"}
{"current_steps": 310, "total_steps": 441, "loss": 0.7351, "learning_rate": 2.1114224838164806e-07, "epoch": 2.0981387478849407, "percentage": 70.29, "elapsed_time": "1:14:59", "remaining_time": "0:31:41"}
{"current_steps": 315, "total_steps": 441, "loss": 0.7367, "learning_rate": 1.964632998359036e-07, "epoch": 2.1319796954314723, "percentage": 71.43, "elapsed_time": "1:16:04", "remaining_time": "0:30:25"}
{"current_steps": 320, "total_steps": 441, "loss": 0.7233, "learning_rate": 1.8218748428984782e-07, "epoch": 2.1658206429780034, "percentage": 72.56, "elapsed_time": "1:17:10", "remaining_time": "0:29:10"}
{"current_steps": 325, "total_steps": 441, "loss": 0.7233, "learning_rate": 1.6833376173198005e-07, "epoch": 2.199661590524535, "percentage": 73.7, "elapsed_time": "1:18:15", "remaining_time": "0:27:56"}
{"current_steps": 330, "total_steps": 441, "loss": 0.7098, "learning_rate": 1.5492053156088498e-07, "epoch": 2.233502538071066, "percentage": 74.83, "elapsed_time": "1:19:22", "remaining_time": "0:26:41"}
{"current_steps": 335, "total_steps": 441, "loss": 0.7129, "learning_rate": 1.4196560814863567e-07, "epoch": 2.267343485617597, "percentage": 75.96, "elapsed_time": "1:20:27", "remaining_time": "0:25:27"}
{"current_steps": 340, "total_steps": 441, "loss": 0.7074, "learning_rate": 1.294861971811773e-07, "epoch": 2.3011844331641287, "percentage": 77.1, "elapsed_time": "1:21:33", "remaining_time": "0:24:13"}
{"current_steps": 345, "total_steps": 441, "loss": 0.7121, "learning_rate": 1.1749887280712161e-07, "epoch": 2.33502538071066, "percentage": 78.23, "elapsed_time": "1:22:38", "remaining_time": "0:22:59"}
{"current_steps": 350, "total_steps": 441, "loss": 0.7082, "learning_rate": 1.0601955562529774e-07, "epoch": 2.3688663282571913, "percentage": 79.37, "elapsed_time": "1:23:43", "remaining_time": "0:21:46"}
{"current_steps": 350, "total_steps": 441, "eval_loss": 0.8359954357147217, "epoch": 2.3688663282571913, "percentage": 79.37, "elapsed_time": "1:24:56", "remaining_time": "0:22:05"}
{"current_steps": 355, "total_steps": 441, "loss": 0.7117, "learning_rate": 9.506349154029425e-08, "epoch": 2.4027072758037225, "percentage": 80.5, "elapsed_time": "1:26:02", "remaining_time": "0:20:50"}
{"current_steps": 360, "total_steps": 441, "loss": 0.7238, "learning_rate": 8.46452315140772e-08, "epoch": 2.436548223350254, "percentage": 81.63, "elapsed_time": "1:27:07", "remaining_time": "0:19:36"}
{"current_steps": 365, "total_steps": 441, "loss": 0.7385, "learning_rate": 7.477861224057403e-08, "epoch": 2.470389170896785, "percentage": 82.77, "elapsed_time": "1:28:13", "remaining_time": "0:18:22"}
{"current_steps": 370, "total_steps": 441, "loss": 0.7239, "learning_rate": 6.547673776889095e-08, "epoch": 2.504230118443316, "percentage": 83.9, "elapsed_time": "1:29:19", "remaining_time": "0:17:08"}
{"current_steps": 375, "total_steps": 441, "loss": 0.6999, "learning_rate": 5.6751962099570396e-08, "epoch": 2.5380710659898478, "percentage": 85.03, "elapsed_time": "1:30:24", "remaining_time": "0:15:54"}
{"current_steps": 380, "total_steps": 441, "loss": 0.7253, "learning_rate": 4.861587277700274e-08, "epoch": 2.571912013536379, "percentage": 86.17, "elapsed_time": "1:31:30", "remaining_time": "0:14:41"}
{"current_steps": 385, "total_steps": 441, "loss": 0.7267, "learning_rate": 4.107927549978235e-08, "epoch": 2.6057529610829104, "percentage": 87.3, "elapsed_time": "1:32:36", "remaining_time": "0:13:28"}
{"current_steps": 390, "total_steps": 441, "loss": 0.7179, "learning_rate": 3.4152179769449396e-08, "epoch": 2.6395939086294415, "percentage": 88.44, "elapsed_time": "1:33:40", "remaining_time": "0:12:15"}
{"current_steps": 395, "total_steps": 441, "loss": 0.7043, "learning_rate": 2.784378559667622e-08, "epoch": 2.673434856175973, "percentage": 89.57, "elapsed_time": "1:34:45", "remaining_time": "0:11:02"}
{"current_steps": 400, "total_steps": 441, "loss": 0.7007, "learning_rate": 2.2162471282553553e-08, "epoch": 2.707275803722504, "percentage": 90.7, "elapsed_time": "1:35:51", "remaining_time": "0:09:49"}
{"current_steps": 400, "total_steps": 441, "eval_loss": 0.8346139788627625, "epoch": 2.707275803722504, "percentage": 90.7, "elapsed_time": "1:37:04", "remaining_time": "0:09:56"}
{"current_steps": 405, "total_steps": 441, "loss": 0.7232, "learning_rate": 1.7115782291206082e-08, "epoch": 2.7411167512690353, "percentage": 91.84, "elapsed_time": "1:38:10", "remaining_time": "0:08:43"}
{"current_steps": 410, "total_steps": 441, "loss": 0.7213, "learning_rate": 1.2710421228514733e-08, "epoch": 2.774957698815567, "percentage": 92.97, "elapsed_time": "1:39:15", "remaining_time": "0:07:30"}
{"current_steps": 415, "total_steps": 441, "loss": 0.7114, "learning_rate": 8.952238940255153e-09, "epoch": 2.808798646362098, "percentage": 94.1, "elapsed_time": "1:40:21", "remaining_time": "0:06:17"}
{"current_steps": 420, "total_steps": 441, "loss": 0.7148, "learning_rate": 5.846226741475557e-09, "epoch": 2.8426395939086295, "percentage": 95.24, "elapsed_time": "1:41:27", "remaining_time": "0:05:04"}
{"current_steps": 425, "total_steps": 441, "loss": 0.731, "learning_rate": 3.3965097874343872e-09, "epoch": 2.8764805414551606, "percentage": 96.37, "elapsed_time": "1:42:33", "remaining_time": "0:03:51"}
{"current_steps": 430, "total_steps": 441, "loss": 0.7146, "learning_rate": 1.6063415949008618e-09, "epoch": 2.910321489001692, "percentage": 97.51, "elapsed_time": "1:43:38", "remaining_time": "0:02:39"}
{"current_steps": 435, "total_steps": 441, "loss": 0.7113, "learning_rate": 4.780997210962478e-10, "epoch": 2.9441624365482233, "percentage": 98.64, "elapsed_time": "1:44:44", "remaining_time": "0:01:26"}
{"current_steps": 440, "total_steps": 441, "loss": 0.701, "learning_rate": 1.328260601385356e-11, "epoch": 2.9780033840947544, "percentage": 99.77, "elapsed_time": "1:45:49", "remaining_time": "0:00:14"}
{"current_steps": 441, "total_steps": 441, "epoch": 2.984771573604061, "percentage": 100.0, "elapsed_time": "1:46:35", "remaining_time": "0:00:00"}