File size: 2,187 Bytes
2755b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: Compcap_cosi_0_60
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Compcap_cosi_0_60
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the Compcap_cosi_0_60 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8026
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9416 | 0.2257 | 50 | 0.9273 |
| 0.876 | 0.4515 | 100 | 0.8720 |
| 0.8328 | 0.6772 | 150 | 0.8474 |
| 0.8288 | 0.9029 | 200 | 0.8303 |
| 0.772 | 1.1287 | 250 | 0.8230 |
| 0.7434 | 1.3544 | 300 | 0.8150 |
| 0.7387 | 1.5801 | 350 | 0.8084 |
| 0.7409 | 1.8059 | 400 | 0.8031 |
| 0.7112 | 2.0316 | 450 | 0.8033 |
| 0.7123 | 2.2573 | 500 | 0.8042 |
| 0.7057 | 2.4831 | 550 | 0.8041 |
| 0.6976 | 2.7088 | 600 | 0.8029 |
| 0.6986 | 2.9345 | 650 | 0.8026 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
|