{"current_steps": 5, "total_steps": 222, "loss": 1.7341, "learning_rate": 5e-07, "epoch": 0.06756756756756757, "percentage": 2.25, "elapsed_time": "0:01:09", "remaining_time": "0:49:57"} {"current_steps": 10, "total_steps": 222, "loss": 1.5944, "learning_rate": 1e-06, "epoch": 0.13513513513513514, "percentage": 4.5, "elapsed_time": "0:02:14", "remaining_time": "0:47:28"} {"current_steps": 15, "total_steps": 222, "loss": 1.2845, "learning_rate": 9.98628141419305e-07, "epoch": 0.20270270270270271, "percentage": 6.76, "elapsed_time": "0:03:20", "remaining_time": "0:46:06"} {"current_steps": 20, "total_steps": 222, "loss": 1.1305, "learning_rate": 9.94520093661082e-07, "epoch": 0.2702702702702703, "percentage": 9.01, "elapsed_time": "0:04:26", "remaining_time": "0:44:48"} {"current_steps": 25, "total_steps": 222, "loss": 1.0578, "learning_rate": 9.876983993675989e-07, "epoch": 0.33783783783783783, "percentage": 11.26, "elapsed_time": "0:05:31", "remaining_time": "0:43:33"} {"current_steps": 30, "total_steps": 222, "loss": 1.0215, "learning_rate": 9.78200492138261e-07, "epoch": 0.40540540540540543, "percentage": 13.51, "elapsed_time": "0:06:37", "remaining_time": "0:42:25"} {"current_steps": 35, "total_steps": 222, "loss": 0.9831, "learning_rate": 9.66078491115194e-07, "epoch": 0.47297297297297297, "percentage": 15.77, "elapsed_time": "0:07:42", "remaining_time": "0:41:12"} {"current_steps": 40, "total_steps": 222, "loss": 0.9719, "learning_rate": 9.513989149828717e-07, "epoch": 0.5405405405405406, "percentage": 18.02, "elapsed_time": "0:08:47", "remaining_time": "0:40:02"} {"current_steps": 45, "total_steps": 222, "loss": 0.9608, "learning_rate": 9.342423169512071e-07, "epoch": 0.6081081081081081, "percentage": 20.27, "elapsed_time": "0:09:53", "remaining_time": "0:38:53"} {"current_steps": 50, "total_steps": 222, "loss": 0.934, "learning_rate": 9.147028427251009e-07, "epoch": 0.6756756756756757, "percentage": 22.52, "elapsed_time": "0:10:58", "remaining_time": "0:37:45"} {"current_steps": 50, "total_steps": 222, "eval_loss": 0.9346795082092285, "epoch": 0.6756756756756757, "percentage": 22.52, "elapsed_time": "0:11:35", "remaining_time": "0:39:52"} {"current_steps": 55, "total_steps": 222, "loss": 0.9282, "learning_rate": 8.928877138860706e-07, "epoch": 0.7432432432432432, "percentage": 24.77, "elapsed_time": "0:12:41", "remaining_time": "0:38:31"} {"current_steps": 60, "total_steps": 222, "loss": 0.9244, "learning_rate": 8.689166395208636e-07, "epoch": 0.8108108108108109, "percentage": 27.03, "elapsed_time": "0:13:46", "remaining_time": "0:37:12"} {"current_steps": 65, "total_steps": 222, "loss": 0.9272, "learning_rate": 8.429211593257052e-07, "epoch": 0.8783783783783784, "percentage": 29.28, "elapsed_time": "0:14:52", "remaining_time": "0:35:55"} {"current_steps": 70, "total_steps": 222, "loss": 0.9078, "learning_rate": 8.150439217908556e-07, "epoch": 0.9459459459459459, "percentage": 31.53, "elapsed_time": "0:15:57", "remaining_time": "0:34:38"} {"current_steps": 75, "total_steps": 222, "loss": 0.8899, "learning_rate": 7.854379014263876e-07, "epoch": 1.0135135135135136, "percentage": 33.78, "elapsed_time": "0:17:02", "remaining_time": "0:33:23"} {"current_steps": 80, "total_steps": 222, "loss": 0.8386, "learning_rate": 7.542655593246103e-07, "epoch": 1.0810810810810811, "percentage": 36.04, "elapsed_time": "0:18:07", "remaining_time": "0:32:11"} {"current_steps": 85, "total_steps": 222, "loss": 0.8301, "learning_rate": 7.216979516654943e-07, "epoch": 1.1486486486486487, "percentage": 38.29, "elapsed_time": "0:19:13", "remaining_time": "0:30:58"} {"current_steps": 90, "total_steps": 222, "loss": 0.8229, "learning_rate": 6.87913791057119e-07, "epoch": 1.2162162162162162, "percentage": 40.54, "elapsed_time": "0:20:18", "remaining_time": "0:29:46"} {"current_steps": 95, "total_steps": 222, "loss": 0.8438, "learning_rate": 6.530984658619733e-07, "epoch": 1.2837837837837838, "percentage": 42.79, "elapsed_time": "0:21:23", "remaining_time": "0:28:36"} {"current_steps": 100, "total_steps": 222, "loss": 0.8288, "learning_rate": 6.174430228904919e-07, "epoch": 1.3513513513513513, "percentage": 45.05, "elapsed_time": "0:22:29", "remaining_time": "0:27:26"} {"current_steps": 100, "total_steps": 222, "eval_loss": 0.8865894079208374, "epoch": 1.3513513513513513, "percentage": 45.05, "elapsed_time": "0:23:05", "remaining_time": "0:28:10"} {"current_steps": 105, "total_steps": 222, "loss": 0.8215, "learning_rate": 5.8114311904423e-07, "epoch": 1.4189189189189189, "percentage": 47.3, "elapsed_time": "0:24:10", "remaining_time": "0:26:56"} {"current_steps": 110, "total_steps": 222, "loss": 0.8085, "learning_rate": 5.443979476614674e-07, "epoch": 1.4864864864864864, "percentage": 49.55, "elapsed_time": "0:25:15", "remaining_time": "0:25:42"} {"current_steps": 115, "total_steps": 222, "loss": 0.8189, "learning_rate": 5.074091454568463e-07, "epoch": 1.554054054054054, "percentage": 51.8, "elapsed_time": "0:26:21", "remaining_time": "0:24:31"} {"current_steps": 120, "total_steps": 222, "loss": 0.8138, "learning_rate": 4.703796860531429e-07, "epoch": 1.6216216216216215, "percentage": 54.05, "elapsed_time": "0:27:26", "remaining_time": "0:23:19"} {"current_steps": 125, "total_steps": 222, "loss": 0.8233, "learning_rate": 4.3351276617684285e-07, "epoch": 1.689189189189189, "percentage": 56.31, "elapsed_time": "0:28:32", "remaining_time": "0:22:08"} {"current_steps": 130, "total_steps": 222, "loss": 0.8085, "learning_rate": 3.970106906294509e-07, "epoch": 1.7567567567567568, "percentage": 58.56, "elapsed_time": "0:29:37", "remaining_time": "0:20:58"} {"current_steps": 135, "total_steps": 222, "loss": 0.8133, "learning_rate": 3.610737621531781e-07, "epoch": 1.8243243243243243, "percentage": 60.81, "elapsed_time": "0:30:43", "remaining_time": "0:19:47"} {"current_steps": 140, "total_steps": 222, "loss": 0.7966, "learning_rate": 3.2589918228280066e-07, "epoch": 1.8918918918918919, "percentage": 63.06, "elapsed_time": "0:31:48", "remaining_time": "0:18:37"} {"current_steps": 145, "total_steps": 222, "loss": 0.7986, "learning_rate": 2.916799692151884e-07, "epoch": 1.9594594594594594, "percentage": 65.32, "elapsed_time": "0:32:53", "remaining_time": "0:17:28"} {"current_steps": 150, "total_steps": 222, "loss": 0.7923, "learning_rate": 2.5860389863462763e-07, "epoch": 2.027027027027027, "percentage": 67.57, "elapsed_time": "0:33:58", "remaining_time": "0:16:18"} {"current_steps": 150, "total_steps": 222, "eval_loss": 0.8694743514060974, "epoch": 2.027027027027027, "percentage": 67.57, "elapsed_time": "0:34:34", "remaining_time": "0:16:35"} {"current_steps": 155, "total_steps": 222, "loss": 0.7511, "learning_rate": 2.2685247330608414e-07, "epoch": 2.0945945945945947, "percentage": 69.82, "elapsed_time": "0:35:40", "remaining_time": "0:15:25"} {"current_steps": 160, "total_steps": 222, "loss": 0.7588, "learning_rate": 1.9659992709070344e-07, "epoch": 2.1621621621621623, "percentage": 72.07, "elapsed_time": "0:36:45", "remaining_time": "0:14:14"} {"current_steps": 165, "total_steps": 222, "loss": 0.7341, "learning_rate": 1.6801226884893893e-07, "epoch": 2.22972972972973, "percentage": 74.32, "elapsed_time": "0:37:51", "remaining_time": "0:13:04"} {"current_steps": 170, "total_steps": 222, "loss": 0.7554, "learning_rate": 1.412463714778343e-07, "epoch": 2.2972972972972974, "percentage": 76.58, "elapsed_time": "0:38:56", "remaining_time": "0:11:54"} {"current_steps": 175, "total_steps": 222, "loss": 0.7544, "learning_rate": 1.1644911108130434e-07, "epoch": 2.364864864864865, "percentage": 78.83, "elapsed_time": "0:40:01", "remaining_time": "0:10:44"} {"current_steps": 180, "total_steps": 222, "loss": 0.7555, "learning_rate": 9.375656099715934e-08, "epoch": 2.4324324324324325, "percentage": 81.08, "elapsed_time": "0:41:06", "remaining_time": "0:09:35"} {"current_steps": 185, "total_steps": 222, "loss": 0.7524, "learning_rate": 7.329324510360269e-08, "epoch": 2.5, "percentage": 83.33, "elapsed_time": "0:42:11", "remaining_time": "0:08:26"} {"current_steps": 190, "total_steps": 222, "loss": 0.7545, "learning_rate": 5.517145450262639e-08, "epoch": 2.5675675675675675, "percentage": 85.59, "elapsed_time": "0:43:16", "remaining_time": "0:07:17"} {"current_steps": 195, "total_steps": 222, "loss": 0.7583, "learning_rate": 3.9490631329964554e-08, "epoch": 2.635135135135135, "percentage": 87.84, "elapsed_time": "0:44:21", "remaining_time": "0:06:08"} {"current_steps": 200, "total_steps": 222, "loss": 0.7615, "learning_rate": 2.63368230729043e-08, "epoch": 2.7027027027027026, "percentage": 90.09, "elapsed_time": "0:45:27", "remaining_time": "0:04:59"} {"current_steps": 200, "total_steps": 222, "eval_loss": 0.8699440956115723, "epoch": 2.7027027027027026, "percentage": 90.09, "elapsed_time": "0:46:03", "remaining_time": "0:05:03"} {"current_steps": 205, "total_steps": 222, "loss": 0.7678, "learning_rate": 1.5782210390350713e-08, "epoch": 2.77027027027027, "percentage": 92.34, "elapsed_time": "0:47:08", "remaining_time": "0:03:54"} {"current_steps": 210, "total_steps": 222, "loss": 0.7493, "learning_rate": 7.884711026201584e-09, "epoch": 2.8378378378378377, "percentage": 94.59, "elapsed_time": "0:48:14", "remaining_time": "0:02:45"} {"current_steps": 215, "total_steps": 222, "loss": 0.7561, "learning_rate": 2.687661989531964e-09, "epoch": 2.9054054054054053, "percentage": 96.85, "elapsed_time": "0:49:19", "remaining_time": "0:01:36"} {"current_steps": 220, "total_steps": 222, "loss": 0.7664, "learning_rate": 2.1958174560282594e-10, "epoch": 2.972972972972973, "percentage": 99.1, "elapsed_time": "0:50:24", "remaining_time": "0:00:27"} {"current_steps": 222, "total_steps": 222, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "0:51:20", "remaining_time": "0:00:00"}