File size: 29,468 Bytes
b33c1cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
{"current_steps": 5, "total_steps": 663, "loss": 1.7274, "learning_rate": 5e-07, "epoch": 0.022573363431151242, "percentage": 0.75, "elapsed_time": "0:01:10", "remaining_time": "2:33:52"}
{"current_steps": 10, "total_steps": 663, "loss": 1.5904, "learning_rate": 1e-06, "epoch": 0.045146726862302484, "percentage": 1.51, "elapsed_time": "0:02:15", "remaining_time": "2:27:49"}
{"current_steps": 15, "total_steps": 663, "loss": 1.2673, "learning_rate": 9.998553453302385e-07, "epoch": 0.06772009029345373, "percentage": 2.26, "elapsed_time": "0:03:21", "remaining_time": "2:24:57"}
{"current_steps": 20, "total_steps": 663, "loss": 1.1381, "learning_rate": 9.99421465020848e-07, "epoch": 0.09029345372460497, "percentage": 3.02, "elapsed_time": "0:04:26", "remaining_time": "2:22:44"}
{"current_steps": 25, "total_steps": 663, "loss": 1.068, "learning_rate": 9.9869861012308e-07, "epoch": 0.11286681715575621, "percentage": 3.77, "elapsed_time": "0:05:32", "remaining_time": "2:21:21"}
{"current_steps": 30, "total_steps": 663, "loss": 1.0093, "learning_rate": 9.976871988942804e-07, "epoch": 0.13544018058690746, "percentage": 4.52, "elapsed_time": "0:06:38", "remaining_time": "2:20:02"}
{"current_steps": 35, "total_steps": 663, "loss": 0.965, "learning_rate": 9.963878165558785e-07, "epoch": 0.1580135440180587, "percentage": 5.28, "elapsed_time": "0:07:43", "remaining_time": "2:18:42"}
{"current_steps": 40, "total_steps": 663, "loss": 0.9569, "learning_rate": 9.948012149547666e-07, "epoch": 0.18058690744920994, "percentage": 6.03, "elapsed_time": "0:08:48", "remaining_time": "2:17:18"}
{"current_steps": 45, "total_steps": 663, "loss": 0.9574, "learning_rate": 9.929283121282675e-07, "epoch": 0.20316027088036118, "percentage": 6.79, "elapsed_time": "0:09:53", "remaining_time": "2:15:54"}
{"current_steps": 50, "total_steps": 663, "loss": 0.9348, "learning_rate": 9.9077019177294e-07, "epoch": 0.22573363431151242, "percentage": 7.54, "elapsed_time": "0:10:59", "remaining_time": "2:14:42"}
{"current_steps": 50, "total_steps": 663, "eval_loss": 0.9328124523162842, "epoch": 0.22573363431151242, "percentage": 7.54, "elapsed_time": "0:12:49", "remaining_time": "2:37:13"}
{"current_steps": 55, "total_steps": 663, "loss": 0.9537, "learning_rate": 9.88328102617534e-07, "epoch": 0.24830699774266365, "percentage": 8.3, "elapsed_time": "0:13:54", "remaining_time": "2:33:42"}
{"current_steps": 60, "total_steps": 663, "loss": 0.911, "learning_rate": 9.856034577004504e-07, "epoch": 0.2708803611738149, "percentage": 9.05, "elapsed_time": "0:14:58", "remaining_time": "2:30:33"}
{"current_steps": 65, "total_steps": 663, "loss": 0.9246, "learning_rate": 9.82597833552132e-07, "epoch": 0.29345372460496616, "percentage": 9.8, "elapsed_time": "0:16:04", "remaining_time": "2:27:57"}
{"current_steps": 70, "total_steps": 663, "loss": 0.8965, "learning_rate": 9.793129692828533e-07, "epoch": 0.3160270880361174, "percentage": 10.56, "elapsed_time": "0:17:09", "remaining_time": "2:25:21"}
{"current_steps": 75, "total_steps": 663, "loss": 0.8886, "learning_rate": 9.757507655764384e-07, "epoch": 0.33860045146726864, "percentage": 11.31, "elapsed_time": "0:18:14", "remaining_time": "2:23:01"}
{"current_steps": 80, "total_steps": 663, "loss": 0.8754, "learning_rate": 9.719132835904906e-07, "epoch": 0.3611738148984199, "percentage": 12.07, "elapsed_time": "0:19:19", "remaining_time": "2:20:49"}
{"current_steps": 85, "total_steps": 663, "loss": 0.8817, "learning_rate": 9.678027437637677e-07, "epoch": 0.3837471783295711, "percentage": 12.82, "elapsed_time": "0:20:24", "remaining_time": "2:18:49"}
{"current_steps": 90, "total_steps": 663, "loss": 0.8962, "learning_rate": 9.634215245313939e-07, "epoch": 0.40632054176072235, "percentage": 13.57, "elapsed_time": "0:21:30", "remaining_time": "2:16:58"}
{"current_steps": 95, "total_steps": 663, "loss": 0.8889, "learning_rate": 9.587721609486543e-07, "epoch": 0.4288939051918736, "percentage": 14.33, "elapsed_time": "0:22:36", "remaining_time": "2:15:12"}
{"current_steps": 100, "total_steps": 663, "loss": 0.8794, "learning_rate": 9.538573432241637e-07, "epoch": 0.45146726862302483, "percentage": 15.08, "elapsed_time": "0:23:42", "remaining_time": "2:13:28"}
{"current_steps": 100, "total_steps": 663, "eval_loss": 0.8777003288269043, "epoch": 0.45146726862302483, "percentage": 15.08, "elapsed_time": "0:25:32", "remaining_time": "2:23:45"}
{"current_steps": 105, "total_steps": 663, "loss": 0.889, "learning_rate": 9.486799151632612e-07, "epoch": 0.47404063205417607, "percentage": 15.84, "elapsed_time": "0:26:36", "remaining_time": "2:21:25"}
{"current_steps": 110, "total_steps": 663, "loss": 0.8764, "learning_rate": 9.432428725225326e-07, "epoch": 0.4966139954853273, "percentage": 16.59, "elapsed_time": "0:27:42", "remaining_time": "2:19:18"}
{"current_steps": 115, "total_steps": 663, "loss": 0.8801, "learning_rate": 9.375493612764085e-07, "epoch": 0.5191873589164786, "percentage": 17.35, "elapsed_time": "0:28:48", "remaining_time": "2:17:14"}
{"current_steps": 120, "total_steps": 663, "loss": 0.8595, "learning_rate": 9.316026757968454e-07, "epoch": 0.5417607223476298, "percentage": 18.1, "elapsed_time": "0:29:53", "remaining_time": "2:15:15"}
{"current_steps": 125, "total_steps": 663, "loss": 0.8595, "learning_rate": 9.2540625694714e-07, "epoch": 0.5643340857787811, "percentage": 18.85, "elapsed_time": "0:30:58", "remaining_time": "2:13:19"}
{"current_steps": 130, "total_steps": 663, "loss": 0.8596, "learning_rate": 9.189636900909817e-07, "epoch": 0.5869074492099323, "percentage": 19.61, "elapsed_time": "0:32:03", "remaining_time": "2:11:24"}
{"current_steps": 135, "total_steps": 663, "loss": 0.8682, "learning_rate": 9.122787030178949e-07, "epoch": 0.6094808126410836, "percentage": 20.36, "elapsed_time": "0:33:08", "remaining_time": "2:09:36"}
{"current_steps": 140, "total_steps": 663, "loss": 0.8663, "learning_rate": 9.053551637862692e-07, "epoch": 0.6320541760722348, "percentage": 21.12, "elapsed_time": "0:34:14", "remaining_time": "2:07:53"}
{"current_steps": 145, "total_steps": 663, "loss": 0.8551, "learning_rate": 8.98197078485229e-07, "epoch": 0.654627539503386, "percentage": 21.87, "elapsed_time": "0:35:19", "remaining_time": "2:06:09"}
{"current_steps": 150, "total_steps": 663, "loss": 0.851, "learning_rate": 8.908085889166357e-07, "epoch": 0.6772009029345373, "percentage": 22.62, "elapsed_time": "0:36:25", "remaining_time": "2:04:32"}
{"current_steps": 150, "total_steps": 663, "eval_loss": 0.8527019023895264, "epoch": 0.6772009029345373, "percentage": 22.62, "elapsed_time": "0:38:14", "remaining_time": "2:10:47"}
{"current_steps": 155, "total_steps": 663, "loss": 0.8529, "learning_rate": 8.831939701985636e-07, "epoch": 0.6997742663656885, "percentage": 23.38, "elapsed_time": "0:39:19", "remaining_time": "2:08:54"}
{"current_steps": 160, "total_steps": 663, "loss": 0.8348, "learning_rate": 8.75357628291637e-07, "epoch": 0.7223476297968398, "percentage": 24.13, "elapsed_time": "0:40:25", "remaining_time": "2:07:04"}
{"current_steps": 165, "total_steps": 663, "loss": 0.8617, "learning_rate": 8.673040974496584e-07, "epoch": 0.744920993227991, "percentage": 24.89, "elapsed_time": "0:41:29", "remaining_time": "2:05:14"}
{"current_steps": 170, "total_steps": 663, "loss": 0.8467, "learning_rate": 8.590380375960053e-07, "epoch": 0.7674943566591422, "percentage": 25.64, "elapsed_time": "0:42:35", "remaining_time": "2:03:30"}
{"current_steps": 175, "total_steps": 663, "loss": 0.8609, "learning_rate": 8.505642316273111e-07, "epoch": 0.7900677200902935, "percentage": 26.4, "elapsed_time": "0:43:40", "remaining_time": "2:01:47"}
{"current_steps": 180, "total_steps": 663, "loss": 0.8252, "learning_rate": 8.418875826459919e-07, "epoch": 0.8126410835214447, "percentage": 27.15, "elapsed_time": "0:44:45", "remaining_time": "2:00:06"}
{"current_steps": 185, "total_steps": 663, "loss": 0.8514, "learning_rate": 8.330131111232201e-07, "epoch": 0.835214446952596, "percentage": 27.9, "elapsed_time": "0:45:51", "remaining_time": "1:58:28"}
{"current_steps": 190, "total_steps": 663, "loss": 0.8199, "learning_rate": 8.239459519939851e-07, "epoch": 0.8577878103837472, "percentage": 28.66, "elapsed_time": "0:46:57", "remaining_time": "1:56:53"}
{"current_steps": 195, "total_steps": 663, "loss": 0.8362, "learning_rate": 8.14691351685925e-07, "epoch": 0.8803611738148984, "percentage": 29.41, "elapsed_time": "0:48:02", "remaining_time": "1:55:18"}
{"current_steps": 200, "total_steps": 663, "loss": 0.8374, "learning_rate": 8.052546650836453e-07, "epoch": 0.9029345372460497, "percentage": 30.17, "elapsed_time": "0:49:08", "remaining_time": "1:53:46"}
{"current_steps": 200, "total_steps": 663, "eval_loss": 0.8355751633644104, "epoch": 0.9029345372460497, "percentage": 30.17, "elapsed_time": "0:50:58", "remaining_time": "1:58:00"}
{"current_steps": 205, "total_steps": 663, "loss": 0.8268, "learning_rate": 7.956413524302823e-07, "epoch": 0.9255079006772009, "percentage": 30.92, "elapsed_time": "0:52:04", "remaining_time": "1:56:20"}
{"current_steps": 210, "total_steps": 663, "loss": 0.8433, "learning_rate": 7.858569761681047e-07, "epoch": 0.9480812641083521, "percentage": 31.67, "elapsed_time": "0:53:09", "remaining_time": "1:54:40"}
{"current_steps": 215, "total_steps": 663, "loss": 0.84, "learning_rate": 7.759071977199806e-07, "epoch": 0.9706546275395034, "percentage": 32.43, "elapsed_time": "0:54:15", "remaining_time": "1:53:02"}
{"current_steps": 220, "total_steps": 663, "loss": 0.8223, "learning_rate": 7.657977742135725e-07, "epoch": 0.9932279909706546, "percentage": 33.18, "elapsed_time": "0:55:20", "remaining_time": "1:51:26"}
{"current_steps": 225, "total_steps": 663, "loss": 0.8016, "learning_rate": 7.555345551501557e-07, "epoch": 1.0158013544018059, "percentage": 33.94, "elapsed_time": "0:56:26", "remaining_time": "1:49:52"}
{"current_steps": 230, "total_steps": 663, "loss": 0.7731, "learning_rate": 7.451234790199871e-07, "epoch": 1.0383747178329572, "percentage": 34.69, "elapsed_time": "0:57:31", "remaining_time": "1:48:18"}
{"current_steps": 235, "total_steps": 663, "loss": 0.7721, "learning_rate": 7.345705698661852e-07, "epoch": 1.0609480812641083, "percentage": 35.44, "elapsed_time": "0:58:37", "remaining_time": "1:46:46"}
{"current_steps": 240, "total_steps": 663, "loss": 0.7618, "learning_rate": 7.23881933799104e-07, "epoch": 1.0835214446952597, "percentage": 36.2, "elapsed_time": "0:59:43", "remaining_time": "1:45:15"}
{"current_steps": 245, "total_steps": 663, "loss": 0.771, "learning_rate": 7.130637554632257e-07, "epoch": 1.1060948081264108, "percentage": 36.95, "elapsed_time": "1:00:48", "remaining_time": "1:43:44"}
{"current_steps": 250, "total_steps": 663, "loss": 0.7654, "learning_rate": 7.021222944586088e-07, "epoch": 1.1286681715575622, "percentage": 37.71, "elapsed_time": "1:01:53", "remaining_time": "1:42:15"}
{"current_steps": 250, "total_steps": 663, "eval_loss": 0.828125, "epoch": 1.1286681715575622, "percentage": 37.71, "elapsed_time": "1:03:43", "remaining_time": "1:45:16"}
{"current_steps": 255, "total_steps": 663, "loss": 0.7535, "learning_rate": 6.910638817189664e-07, "epoch": 1.1512415349887133, "percentage": 38.46, "elapsed_time": "1:04:48", "remaining_time": "1:43:42"}
{"current_steps": 260, "total_steps": 663, "loss": 0.7603, "learning_rate": 6.798949158484705e-07, "epoch": 1.1738148984198646, "percentage": 39.22, "elapsed_time": "1:05:54", "remaining_time": "1:42:08"}
{"current_steps": 265, "total_steps": 663, "loss": 0.7691, "learning_rate": 6.686218594193993e-07, "epoch": 1.1963882618510158, "percentage": 39.97, "elapsed_time": "1:06:59", "remaining_time": "1:40:36"}
{"current_steps": 270, "total_steps": 663, "loss": 0.7697, "learning_rate": 6.572512352327726e-07, "epoch": 1.2189616252821671, "percentage": 40.72, "elapsed_time": "1:08:04", "remaining_time": "1:39:05"}
{"current_steps": 275, "total_steps": 663, "loss": 0.7534, "learning_rate": 6.457896225441371e-07, "epoch": 1.2415349887133182, "percentage": 41.48, "elapsed_time": "1:09:10", "remaining_time": "1:37:35"}
{"current_steps": 280, "total_steps": 663, "loss": 0.7697, "learning_rate": 6.342436532566865e-07, "epoch": 1.2641083521444696, "percentage": 42.23, "elapsed_time": "1:10:15", "remaining_time": "1:36:06"}
{"current_steps": 285, "total_steps": 663, "loss": 0.7701, "learning_rate": 6.226200080839182e-07, "epoch": 1.2866817155756207, "percentage": 42.99, "elapsed_time": "1:11:20", "remaining_time": "1:34:37"}
{"current_steps": 290, "total_steps": 663, "loss": 0.7731, "learning_rate": 6.109254126840479e-07, "epoch": 1.309255079006772, "percentage": 43.74, "elapsed_time": "1:12:25", "remaining_time": "1:33:09"}
{"current_steps": 295, "total_steps": 663, "loss": 0.758, "learning_rate": 5.991666337684176e-07, "epoch": 1.3318284424379232, "percentage": 44.49, "elapsed_time": "1:13:31", "remaining_time": "1:31:42"}
{"current_steps": 300, "total_steps": 663, "loss": 0.7551, "learning_rate": 5.873504751861507e-07, "epoch": 1.3544018058690745, "percentage": 45.25, "elapsed_time": "1:14:36", "remaining_time": "1:30:16"}
{"current_steps": 300, "total_steps": 663, "eval_loss": 0.8203195929527283, "epoch": 1.3544018058690745, "percentage": 45.25, "elapsed_time": "1:16:25", "remaining_time": "1:32:28"}
{"current_steps": 305, "total_steps": 663, "loss": 0.7589, "learning_rate": 5.754837739873178e-07, "epoch": 1.3769751693002257, "percentage": 46.0, "elapsed_time": "1:17:31", "remaining_time": "1:30:59"}
{"current_steps": 310, "total_steps": 663, "loss": 0.7444, "learning_rate": 5.635733964668909e-07, "epoch": 1.399548532731377, "percentage": 46.76, "elapsed_time": "1:18:36", "remaining_time": "1:29:30"}
{"current_steps": 315, "total_steps": 663, "loss": 0.7585, "learning_rate": 5.516262341917778e-07, "epoch": 1.4221218961625282, "percentage": 47.51, "elapsed_time": "1:19:42", "remaining_time": "1:28:03"}
{"current_steps": 320, "total_steps": 663, "loss": 0.7562, "learning_rate": 5.396492000132325e-07, "epoch": 1.4446952595936795, "percentage": 48.27, "elapsed_time": "1:20:47", "remaining_time": "1:26:35"}
{"current_steps": 325, "total_steps": 663, "loss": 0.7592, "learning_rate": 5.276492240669503e-07, "epoch": 1.4672686230248306, "percentage": 49.02, "elapsed_time": "1:21:52", "remaining_time": "1:25:09"}
{"current_steps": 330, "total_steps": 663, "loss": 0.7585, "learning_rate": 5.156332497631621e-07, "epoch": 1.489841986455982, "percentage": 49.77, "elapsed_time": "1:22:58", "remaining_time": "1:23:43"}
{"current_steps": 335, "total_steps": 663, "loss": 0.751, "learning_rate": 5.036082297690464e-07, "epoch": 1.5124153498871333, "percentage": 50.53, "elapsed_time": "1:24:03", "remaining_time": "1:22:18"}
{"current_steps": 340, "total_steps": 663, "loss": 0.7559, "learning_rate": 4.915811219857882e-07, "epoch": 1.5349887133182845, "percentage": 51.28, "elapsed_time": "1:25:08", "remaining_time": "1:20:53"}
{"current_steps": 345, "total_steps": 663, "loss": 0.7553, "learning_rate": 4.795588855226055e-07, "epoch": 1.5575620767494356, "percentage": 52.04, "elapsed_time": "1:26:13", "remaining_time": "1:19:28"}
{"current_steps": 350, "total_steps": 663, "loss": 0.7532, "learning_rate": 4.6754847667008004e-07, "epoch": 1.580135440180587, "percentage": 52.79, "elapsed_time": "1:27:19", "remaining_time": "1:18:05"}
{"current_steps": 350, "total_steps": 663, "eval_loss": 0.814508318901062, "epoch": 1.580135440180587, "percentage": 52.79, "elapsed_time": "1:29:08", "remaining_time": "1:19:43"}
{"current_steps": 355, "total_steps": 663, "loss": 0.7446, "learning_rate": 4.5555684487511693e-07, "epoch": 1.6027088036117383, "percentage": 53.54, "elapsed_time": "1:30:14", "remaining_time": "1:18:17"}
{"current_steps": 360, "total_steps": 663, "loss": 0.7641, "learning_rate": 4.435909287198646e-07, "epoch": 1.6252821670428894, "percentage": 54.3, "elapsed_time": "1:31:19", "remaining_time": "1:16:52"}
{"current_steps": 365, "total_steps": 663, "loss": 0.7355, "learning_rate": 4.316576519069226e-07, "epoch": 1.6478555304740405, "percentage": 55.05, "elapsed_time": "1:32:25", "remaining_time": "1:15:27"}
{"current_steps": 370, "total_steps": 663, "loss": 0.7302, "learning_rate": 4.197639192531573e-07, "epoch": 1.670428893905192, "percentage": 55.81, "elapsed_time": "1:33:30", "remaining_time": "1:14:02"}
{"current_steps": 375, "total_steps": 663, "loss": 0.7521, "learning_rate": 4.079166126944453e-07, "epoch": 1.6930022573363432, "percentage": 56.56, "elapsed_time": "1:34:36", "remaining_time": "1:12:39"}
{"current_steps": 380, "total_steps": 663, "loss": 0.7496, "learning_rate": 3.9612258730365823e-07, "epoch": 1.7155756207674944, "percentage": 57.32, "elapsed_time": "1:35:41", "remaining_time": "1:11:16"}
{"current_steps": 385, "total_steps": 663, "loss": 0.7311, "learning_rate": 3.843886673241883e-07, "epoch": 1.7381489841986455, "percentage": 58.07, "elapsed_time": "1:36:46", "remaining_time": "1:09:53"}
{"current_steps": 390, "total_steps": 663, "loss": 0.7497, "learning_rate": 3.7272164222131387e-07, "epoch": 1.7607223476297968, "percentage": 58.82, "elapsed_time": "1:37:53", "remaining_time": "1:08:31"}
{"current_steps": 395, "total_steps": 663, "loss": 0.7565, "learning_rate": 3.611282627536887e-07, "epoch": 1.7832957110609482, "percentage": 59.58, "elapsed_time": "1:38:59", "remaining_time": "1:07:09"}
{"current_steps": 400, "total_steps": 663, "loss": 0.7599, "learning_rate": 3.496152370672255e-07, "epoch": 1.8058690744920993, "percentage": 60.33, "elapsed_time": "1:40:04", "remaining_time": "1:05:47"}
{"current_steps": 400, "total_steps": 663, "eval_loss": 0.809232771396637, "epoch": 1.8058690744920993, "percentage": 60.33, "elapsed_time": "1:41:53", "remaining_time": "1:06:59"}
{"current_steps": 405, "total_steps": 663, "loss": 0.7473, "learning_rate": 3.381892268136392e-07, "epoch": 1.8284424379232505, "percentage": 61.09, "elapsed_time": "1:42:57", "remaining_time": "1:05:35"}
{"current_steps": 410, "total_steps": 663, "loss": 0.7304, "learning_rate": 3.2685684329588956e-07, "epoch": 1.8510158013544018, "percentage": 61.84, "elapsed_time": "1:44:03", "remaining_time": "1:04:12"}
{"current_steps": 415, "total_steps": 663, "loss": 0.7555, "learning_rate": 3.1562464364275774e-07, "epoch": 1.8735891647855532, "percentage": 62.59, "elapsed_time": "1:45:08", "remaining_time": "1:02:49"}
{"current_steps": 420, "total_steps": 663, "loss": 0.7341, "learning_rate": 3.044991270147699e-07, "epoch": 1.8961625282167043, "percentage": 63.35, "elapsed_time": "1:46:13", "remaining_time": "1:01:27"}
{"current_steps": 425, "total_steps": 663, "loss": 0.7473, "learning_rate": 2.934867308436613e-07, "epoch": 1.9187358916478554, "percentage": 64.1, "elapsed_time": "1:47:19", "remaining_time": "1:00:06"}
{"current_steps": 430, "total_steps": 663, "loss": 0.7356, "learning_rate": 2.825938271075572e-07, "epoch": 1.9413092550790068, "percentage": 64.86, "elapsed_time": "1:48:25", "remaining_time": "0:58:44"}
{"current_steps": 435, "total_steps": 663, "loss": 0.7532, "learning_rate": 2.7182671864402856e-07, "epoch": 1.963882618510158, "percentage": 65.61, "elapsed_time": "1:49:30", "remaining_time": "0:57:24"}
{"current_steps": 440, "total_steps": 663, "loss": 0.7423, "learning_rate": 2.6119163550315194e-07, "epoch": 1.9864559819413092, "percentage": 66.37, "elapsed_time": "1:50:36", "remaining_time": "0:56:03"}
{"current_steps": 445, "total_steps": 663, "loss": 0.7144, "learning_rate": 2.506947313426854e-07, "epoch": 2.0090293453724604, "percentage": 67.12, "elapsed_time": "1:51:41", "remaining_time": "0:54:43"}
{"current_steps": 450, "total_steps": 663, "loss": 0.6957, "learning_rate": 2.4034207986744847e-07, "epoch": 2.0316027088036117, "percentage": 67.87, "elapsed_time": "1:52:46", "remaining_time": "0:53:22"}
{"current_steps": 450, "total_steps": 663, "eval_loss": 0.8095582723617554, "epoch": 2.0316027088036117, "percentage": 67.87, "elapsed_time": "1:54:36", "remaining_time": "0:54:14"}
{"current_steps": 455, "total_steps": 663, "loss": 0.6859, "learning_rate": 2.301396713149627e-07, "epoch": 2.054176072234763, "percentage": 68.63, "elapsed_time": "1:55:42", "remaining_time": "0:52:53"}
{"current_steps": 460, "total_steps": 663, "loss": 0.6905, "learning_rate": 2.2009340898938738e-07, "epoch": 2.0767494356659144, "percentage": 69.38, "elapsed_time": "1:56:47", "remaining_time": "0:51:32"}
{"current_steps": 465, "total_steps": 663, "loss": 0.6971, "learning_rate": 2.1020910584575891e-07, "epoch": 2.0993227990970653, "percentage": 70.14, "elapsed_time": "1:57:52", "remaining_time": "0:50:11"}
{"current_steps": 470, "total_steps": 663, "loss": 0.6974, "learning_rate": 2.0049248112650563e-07, "epoch": 2.1218961625282167, "percentage": 70.89, "elapsed_time": "1:58:58", "remaining_time": "0:48:51"}
{"current_steps": 475, "total_steps": 663, "loss": 0.694, "learning_rate": 1.9094915705218711e-07, "epoch": 2.144469525959368, "percentage": 71.64, "elapsed_time": "2:00:03", "remaining_time": "0:47:31"}
{"current_steps": 480, "total_steps": 663, "loss": 0.701, "learning_rate": 1.8158465556837304e-07, "epoch": 2.1670428893905194, "percentage": 72.4, "elapsed_time": "2:01:09", "remaining_time": "0:46:11"}
{"current_steps": 485, "total_steps": 663, "loss": 0.6857, "learning_rate": 1.7240439515054218e-07, "epoch": 2.1896162528216703, "percentage": 73.15, "elapsed_time": "2:02:14", "remaining_time": "0:44:51"}
{"current_steps": 490, "total_steps": 663, "loss": 0.6925, "learning_rate": 1.634136876688504e-07, "epoch": 2.2121896162528216, "percentage": 73.91, "elapsed_time": "2:03:19", "remaining_time": "0:43:32"}
{"current_steps": 495, "total_steps": 663, "loss": 0.7049, "learning_rate": 1.5461773531458455e-07, "epoch": 2.234762979683973, "percentage": 74.66, "elapsed_time": "2:04:25", "remaining_time": "0:42:13"}
{"current_steps": 500, "total_steps": 663, "loss": 0.7004, "learning_rate": 1.460216275900769e-07, "epoch": 2.2573363431151243, "percentage": 75.41, "elapsed_time": "2:05:30", "remaining_time": "0:40:54"}
{"current_steps": 500, "total_steps": 663, "eval_loss": 0.8108701705932617, "epoch": 2.2573363431151243, "percentage": 75.41, "elapsed_time": "2:07:20", "remaining_time": "0:41:30"}
{"current_steps": 505, "total_steps": 663, "loss": 0.691, "learning_rate": 1.3763033836382392e-07, "epoch": 2.2799097065462752, "percentage": 76.17, "elapsed_time": "2:08:25", "remaining_time": "0:40:10"}
{"current_steps": 510, "total_steps": 663, "loss": 0.7026, "learning_rate": 1.294487229925132e-07, "epoch": 2.3024830699774266, "percentage": 76.92, "elapsed_time": "2:09:31", "remaining_time": "0:38:51"}
{"current_steps": 515, "total_steps": 663, "loss": 0.6883, "learning_rate": 1.2148151551162345e-07, "epoch": 2.325056433408578, "percentage": 77.68, "elapsed_time": "2:10:36", "remaining_time": "0:37:32"}
{"current_steps": 520, "total_steps": 663, "loss": 0.7025, "learning_rate": 1.137333258962227e-07, "epoch": 2.3476297968397293, "percentage": 78.43, "elapsed_time": "2:11:42", "remaining_time": "0:36:13"}
{"current_steps": 525, "total_steps": 663, "loss": 0.6879, "learning_rate": 1.0620863739355135e-07, "epoch": 2.37020316027088, "percentage": 79.19, "elapsed_time": "2:12:47", "remaining_time": "0:34:54"}
{"current_steps": 530, "total_steps": 663, "loss": 0.6968, "learning_rate": 9.891180392893117e-08, "epoch": 2.3927765237020315, "percentage": 79.94, "elapsed_time": "2:13:52", "remaining_time": "0:33:35"}
{"current_steps": 535, "total_steps": 663, "loss": 0.6914, "learning_rate": 9.184704758650241e-08, "epoch": 2.415349887133183, "percentage": 80.69, "elapsed_time": "2:14:57", "remaining_time": "0:32:17"}
{"current_steps": 540, "total_steps": 663, "loss": 0.7103, "learning_rate": 8.501845616624798e-08, "epoch": 2.4379232505643342, "percentage": 81.45, "elapsed_time": "2:16:02", "remaining_time": "0:30:59"}
{"current_steps": 545, "total_steps": 663, "loss": 0.6925, "learning_rate": 7.842998081871493e-08, "epoch": 2.460496613995485, "percentage": 82.2, "elapsed_time": "2:17:08", "remaining_time": "0:29:41"}
{"current_steps": 550, "total_steps": 663, "loss": 0.7026, "learning_rate": 7.208543375880594e-08, "epoch": 2.4830699774266365, "percentage": 82.96, "elapsed_time": "2:18:13", "remaining_time": "0:28:23"}
{"current_steps": 550, "total_steps": 663, "eval_loss": 0.8100693821907043, "epoch": 2.4830699774266365, "percentage": 82.96, "elapsed_time": "2:20:03", "remaining_time": "0:28:46"}
{"current_steps": 555, "total_steps": 663, "loss": 0.6829, "learning_rate": 6.598848605996004e-08, "epoch": 2.505643340857788, "percentage": 83.71, "elapsed_time": "2:21:08", "remaining_time": "0:27:27"}
{"current_steps": 560, "total_steps": 663, "loss": 0.7032, "learning_rate": 6.014266553000074e-08, "epoch": 2.528216704288939, "percentage": 84.46, "elapsed_time": "2:22:14", "remaining_time": "0:26:09"}
{"current_steps": 565, "total_steps": 663, "loss": 0.6884, "learning_rate": 5.4551354669881145e-08, "epoch": 2.55079006772009, "percentage": 85.22, "elapsed_time": "2:23:20", "remaining_time": "0:24:51"}
{"current_steps": 570, "total_steps": 663, "loss": 0.6951, "learning_rate": 4.921778871650539e-08, "epoch": 2.5733634311512414, "percentage": 85.97, "elapsed_time": "2:24:25", "remaining_time": "0:23:33"}
{"current_steps": 575, "total_steps": 663, "loss": 0.6815, "learning_rate": 4.414505377075978e-08, "epoch": 2.595936794582393, "percentage": 86.73, "elapsed_time": "2:25:30", "remaining_time": "0:22:16"}
{"current_steps": 580, "total_steps": 663, "loss": 0.7001, "learning_rate": 3.933608501183788e-08, "epoch": 2.618510158013544, "percentage": 87.48, "elapsed_time": "2:26:36", "remaining_time": "0:20:58"}
{"current_steps": 585, "total_steps": 663, "loss": 0.7194, "learning_rate": 3.479366499889058e-08, "epoch": 2.6410835214446955, "percentage": 88.24, "elapsed_time": "2:27:41", "remaining_time": "0:19:41"}
{"current_steps": 590, "total_steps": 663, "loss": 0.701, "learning_rate": 3.052042206098537e-08, "epoch": 2.6636568848758464, "percentage": 88.99, "elapsed_time": "2:28:46", "remaining_time": "0:18:24"}
{"current_steps": 595, "total_steps": 663, "loss": 0.6901, "learning_rate": 2.6518828776306347e-08, "epoch": 2.6862302483069977, "percentage": 89.74, "elapsed_time": "2:29:52", "remaining_time": "0:17:07"}
{"current_steps": 600, "total_steps": 663, "loss": 0.7225, "learning_rate": 2.279120054147393e-08, "epoch": 2.708803611738149, "percentage": 90.5, "elapsed_time": "2:30:57", "remaining_time": "0:15:51"}
{"current_steps": 600, "total_steps": 663, "eval_loss": 0.8094750642776489, "epoch": 2.708803611738149, "percentage": 90.5, "elapsed_time": "2:32:47", "remaining_time": "0:16:02"}
{"current_steps": 605, "total_steps": 663, "loss": 0.7129, "learning_rate": 1.9339694231813252e-08, "epoch": 2.7313769751693, "percentage": 91.25, "elapsed_time": "2:33:53", "remaining_time": "0:14:45"}
{"current_steps": 610, "total_steps": 663, "loss": 0.6942, "learning_rate": 1.616630695334592e-08, "epoch": 2.7539503386004514, "percentage": 92.01, "elapsed_time": "2:34:58", "remaining_time": "0:13:27"}
{"current_steps": 615, "total_steps": 663, "loss": 0.7023, "learning_rate": 1.3272874887227281e-08, "epoch": 2.7765237020316027, "percentage": 92.76, "elapsed_time": "2:36:02", "remaining_time": "0:12:10"}
{"current_steps": 620, "total_steps": 663, "loss": 0.7164, "learning_rate": 1.066107222729712e-08, "epoch": 2.799097065462754, "percentage": 93.51, "elapsed_time": "2:37:07", "remaining_time": "0:10:53"}
{"current_steps": 625, "total_steps": 663, "loss": 0.7038, "learning_rate": 8.332410211360608e-09, "epoch": 2.8216704288939054, "percentage": 94.27, "elapsed_time": "2:38:13", "remaining_time": "0:09:37"}
{"current_steps": 630, "total_steps": 663, "loss": 0.6883, "learning_rate": 6.288236246757284e-09, "epoch": 2.8442437923250563, "percentage": 95.02, "elapsed_time": "2:39:18", "remaining_time": "0:08:20"}
{"current_steps": 635, "total_steps": 663, "loss": 0.6832, "learning_rate": 4.529733130726299e-09, "epoch": 2.8668171557562077, "percentage": 95.78, "elapsed_time": "2:40:23", "remaining_time": "0:07:04"}
{"current_steps": 640, "total_steps": 663, "loss": 0.7142, "learning_rate": 3.0579183660177086e-09, "epoch": 2.889390519187359, "percentage": 96.53, "elapsed_time": "2:41:29", "remaining_time": "0:05:48"}
{"current_steps": 645, "total_steps": 663, "loss": 0.6893, "learning_rate": 1.8736435721465326e-09, "epoch": 2.91196388261851, "percentage": 97.29, "elapsed_time": "2:42:34", "remaining_time": "0:04:32"}
{"current_steps": 650, "total_steps": 663, "loss": 0.6961, "learning_rate": 9.775939926296439e-10, "epoch": 2.9345372460496613, "percentage": 98.04, "elapsed_time": "2:43:39", "remaining_time": "0:03:16"}
{"current_steps": 650, "total_steps": 663, "eval_loss": 0.8093209266662598, "epoch": 2.9345372460496613, "percentage": 98.04, "elapsed_time": "2:45:29", "remaining_time": "0:03:18"}
{"current_steps": 655, "total_steps": 663, "loss": 0.7092, "learning_rate": 3.7028809849098954e-10, "epoch": 2.9571106094808126, "percentage": 98.79, "elapsed_time": "2:46:35", "remaining_time": "0:02:02"}
{"current_steps": 660, "total_steps": 663, "loss": 0.7126, "learning_rate": 5.2077288264951166e-11, "epoch": 2.979683972911964, "percentage": 99.55, "elapsed_time": "2:47:40", "remaining_time": "0:00:45"}
{"current_steps": 663, "total_steps": 663, "epoch": 2.9932279909706545, "percentage": 100.0, "elapsed_time": "2:48:51", "remaining_time": "0:00:00"}
|