{"current_steps": 5, "total_steps": 885, "loss": 1.7331, "learning_rate": 5e-07, "epoch": 0.01692047377326565, "percentage": 0.56, "elapsed_time": "0:01:09", "remaining_time": "3:23:02"} {"current_steps": 10, "total_steps": 885, "loss": 1.5909, "learning_rate": 1e-06, "epoch": 0.0338409475465313, "percentage": 1.13, "elapsed_time": "0:02:14", "remaining_time": "3:16:42"} {"current_steps": 15, "total_steps": 885, "loss": 1.3028, "learning_rate": 9.99919433964529e-07, "epoch": 0.050761421319796954, "percentage": 1.69, "elapsed_time": "0:03:19", "remaining_time": "3:13:03"} {"current_steps": 20, "total_steps": 885, "loss": 1.1478, "learning_rate": 9.996777618216605e-07, "epoch": 0.0676818950930626, "percentage": 2.26, "elapsed_time": "0:04:25", "remaining_time": "3:11:32"} {"current_steps": 25, "total_steps": 885, "loss": 1.0675, "learning_rate": 9.992750614536604e-07, "epoch": 0.08460236886632826, "percentage": 2.82, "elapsed_time": "0:05:31", "remaining_time": "3:10:14"} {"current_steps": 30, "total_steps": 885, "loss": 1.0324, "learning_rate": 9.98711462636417e-07, "epoch": 0.10152284263959391, "percentage": 3.39, "elapsed_time": "0:06:37", "remaining_time": "3:08:53"} {"current_steps": 35, "total_steps": 885, "loss": 0.9783, "learning_rate": 9.979871469976195e-07, "epoch": 0.11844331641285956, "percentage": 3.95, "elapsed_time": "0:07:43", "remaining_time": "3:07:31"} {"current_steps": 40, "total_steps": 885, "loss": 0.9717, "learning_rate": 9.971023479582256e-07, "epoch": 0.1353637901861252, "percentage": 4.52, "elapsed_time": "0:08:49", "remaining_time": "3:06:16"} {"current_steps": 45, "total_steps": 885, "loss": 0.9541, "learning_rate": 9.960573506572389e-07, "epoch": 0.15228426395939088, "percentage": 5.08, "elapsed_time": "0:09:54", "remaining_time": "3:04:52"} {"current_steps": 50, "total_steps": 885, "loss": 0.9459, "learning_rate": 9.948524918598173e-07, "epoch": 0.1692047377326565, "percentage": 5.65, "elapsed_time": "0:10:59", "remaining_time": "3:03:28"} {"current_steps": 50, "total_steps": 885, "eval_loss": 0.9274849891662598, "epoch": 0.1692047377326565, "percentage": 5.65, "elapsed_time": "0:13:27", "remaining_time": "3:44:42"} {"current_steps": 55, "total_steps": 885, "loss": 0.9205, "learning_rate": 9.934881598487478e-07, "epoch": 0.18612521150592218, "percentage": 6.21, "elapsed_time": "0:14:32", "remaining_time": "3:39:22"} {"current_steps": 60, "total_steps": 885, "loss": 0.9129, "learning_rate": 9.919647942993147e-07, "epoch": 0.20304568527918782, "percentage": 6.78, "elapsed_time": "0:15:38", "remaining_time": "3:34:58"} {"current_steps": 65, "total_steps": 885, "loss": 0.893, "learning_rate": 9.9028288613761e-07, "epoch": 0.21996615905245348, "percentage": 7.34, "elapsed_time": "0:16:44", "remaining_time": "3:31:06"} {"current_steps": 70, "total_steps": 885, "loss": 0.9107, "learning_rate": 9.884429773823236e-07, "epoch": 0.23688663282571912, "percentage": 7.91, "elapsed_time": "0:17:48", "remaining_time": "3:27:24"} {"current_steps": 75, "total_steps": 885, "loss": 0.8996, "learning_rate": 9.864456609700723e-07, "epoch": 0.25380710659898476, "percentage": 8.47, "elapsed_time": "0:18:54", "remaining_time": "3:24:11"} {"current_steps": 80, "total_steps": 885, "loss": 0.897, "learning_rate": 9.842915805643156e-07, "epoch": 0.2707275803722504, "percentage": 9.04, "elapsed_time": "0:19:58", "remaining_time": "3:21:01"} {"current_steps": 85, "total_steps": 885, "loss": 0.8995, "learning_rate": 9.819814303479267e-07, "epoch": 0.2876480541455161, "percentage": 9.6, "elapsed_time": "0:21:04", "remaining_time": "3:18:25"} {"current_steps": 90, "total_steps": 885, "loss": 0.8845, "learning_rate": 9.795159547994828e-07, "epoch": 0.30456852791878175, "percentage": 10.17, "elapsed_time": "0:22:10", "remaining_time": "3:15:53"} {"current_steps": 95, "total_steps": 885, "loss": 0.8761, "learning_rate": 9.76895948453346e-07, "epoch": 0.32148900169204736, "percentage": 10.73, "elapsed_time": "0:23:15", "remaining_time": "3:13:26"} {"current_steps": 100, "total_steps": 885, "loss": 0.8992, "learning_rate": 9.74122255643613e-07, "epoch": 0.338409475465313, "percentage": 11.3, "elapsed_time": "0:24:20", "remaining_time": "3:11:03"} {"current_steps": 100, "total_steps": 885, "eval_loss": 0.8709495663642883, "epoch": 0.338409475465313, "percentage": 11.3, "elapsed_time": "0:26:46", "remaining_time": "3:30:11"} {"current_steps": 105, "total_steps": 885, "loss": 0.8915, "learning_rate": 9.711957702320174e-07, "epoch": 0.3553299492385787, "percentage": 11.86, "elapsed_time": "0:27:51", "remaining_time": "3:26:54"} {"current_steps": 110, "total_steps": 885, "loss": 0.8814, "learning_rate": 9.681174353198686e-07, "epoch": 0.37225042301184436, "percentage": 12.43, "elapsed_time": "0:28:56", "remaining_time": "3:23:56"} {"current_steps": 115, "total_steps": 885, "loss": 0.8661, "learning_rate": 9.648882429441256e-07, "epoch": 0.38917089678510997, "percentage": 12.99, "elapsed_time": "0:30:01", "remaining_time": "3:21:03"} {"current_steps": 120, "total_steps": 885, "loss": 0.8737, "learning_rate": 9.615092337576987e-07, "epoch": 0.40609137055837563, "percentage": 13.56, "elapsed_time": "0:31:07", "remaining_time": "3:18:22"} {"current_steps": 125, "total_steps": 885, "loss": 0.8585, "learning_rate": 9.579814966940833e-07, "epoch": 0.4230118443316413, "percentage": 14.12, "elapsed_time": "0:32:12", "remaining_time": "3:15:50"} {"current_steps": 130, "total_steps": 885, "loss": 0.8617, "learning_rate": 9.543061686164372e-07, "epoch": 0.43993231810490696, "percentage": 14.69, "elapsed_time": "0:33:18", "remaining_time": "3:13:24"} {"current_steps": 135, "total_steps": 885, "loss": 0.843, "learning_rate": 9.504844339512094e-07, "epoch": 0.45685279187817257, "percentage": 15.25, "elapsed_time": "0:34:24", "remaining_time": "3:11:07"} {"current_steps": 140, "total_steps": 885, "loss": 0.864, "learning_rate": 9.465175243064428e-07, "epoch": 0.47377326565143824, "percentage": 15.82, "elapsed_time": "0:35:29", "remaining_time": "3:08:52"} {"current_steps": 145, "total_steps": 885, "loss": 0.853, "learning_rate": 9.424067180748691e-07, "epoch": 0.4906937394247039, "percentage": 16.38, "elapsed_time": "0:36:35", "remaining_time": "3:06:43"} {"current_steps": 150, "total_steps": 885, "loss": 0.8515, "learning_rate": 9.381533400219317e-07, "epoch": 0.5076142131979695, "percentage": 16.95, "elapsed_time": "0:37:39", "remaining_time": "3:04:33"} {"current_steps": 150, "total_steps": 885, "eval_loss": 0.844601571559906, "epoch": 0.5076142131979695, "percentage": 16.95, "elapsed_time": "0:40:06", "remaining_time": "3:16:30"} {"current_steps": 155, "total_steps": 885, "loss": 0.8511, "learning_rate": 9.337587608588588e-07, "epoch": 0.5245346869712352, "percentage": 17.51, "elapsed_time": "0:41:11", "remaining_time": "3:14:01"} {"current_steps": 160, "total_steps": 885, "loss": 0.8405, "learning_rate": 9.29224396800933e-07, "epoch": 0.5414551607445008, "percentage": 18.08, "elapsed_time": "0:42:16", "remaining_time": "3:11:35"} {"current_steps": 165, "total_steps": 885, "loss": 0.8318, "learning_rate": 9.245517091110968e-07, "epoch": 0.5583756345177665, "percentage": 18.64, "elapsed_time": "0:43:22", "remaining_time": "3:09:16"} {"current_steps": 170, "total_steps": 885, "loss": 0.8507, "learning_rate": 9.197422036290386e-07, "epoch": 0.5752961082910322, "percentage": 19.21, "elapsed_time": "0:44:28", "remaining_time": "3:07:02"} {"current_steps": 175, "total_steps": 885, "loss": 0.8679, "learning_rate": 9.147974302859156e-07, "epoch": 0.5922165820642978, "percentage": 19.77, "elapsed_time": "0:45:34", "remaining_time": "3:04:55"} {"current_steps": 180, "total_steps": 885, "loss": 0.8422, "learning_rate": 9.097189826048659e-07, "epoch": 0.6091370558375635, "percentage": 20.34, "elapsed_time": "0:46:40", "remaining_time": "3:02:47"} {"current_steps": 185, "total_steps": 885, "loss": 0.8392, "learning_rate": 9.045084971874737e-07, "epoch": 0.626057529610829, "percentage": 20.9, "elapsed_time": "0:47:45", "remaining_time": "3:00:42"} {"current_steps": 190, "total_steps": 885, "loss": 0.8423, "learning_rate": 8.991676531863507e-07, "epoch": 0.6429780033840947, "percentage": 21.47, "elapsed_time": "0:48:50", "remaining_time": "2:58:40"} {"current_steps": 195, "total_steps": 885, "loss": 0.838, "learning_rate": 8.93698171764006e-07, "epoch": 0.6598984771573604, "percentage": 22.03, "elapsed_time": "0:49:56", "remaining_time": "2:56:42"} {"current_steps": 200, "total_steps": 885, "loss": 0.8498, "learning_rate": 8.881018155381765e-07, "epoch": 0.676818950930626, "percentage": 22.6, "elapsed_time": "0:51:02", "remaining_time": "2:54:49"} {"current_steps": 200, "total_steps": 885, "eval_loss": 0.8278397917747498, "epoch": 0.676818950930626, "percentage": 22.6, "elapsed_time": "0:53:28", "remaining_time": "3:03:09"} {"current_steps": 205, "total_steps": 885, "loss": 0.8466, "learning_rate": 8.823803880137992e-07, "epoch": 0.6937394247038917, "percentage": 23.16, "elapsed_time": "0:54:33", "remaining_time": "3:00:58"} {"current_steps": 210, "total_steps": 885, "loss": 0.8115, "learning_rate": 8.765357330018055e-07, "epoch": 0.7106598984771574, "percentage": 23.73, "elapsed_time": "0:55:37", "remaining_time": "2:58:48"} {"current_steps": 215, "total_steps": 885, "loss": 0.8325, "learning_rate": 8.705697340249274e-07, "epoch": 0.727580372250423, "percentage": 24.29, "elapsed_time": "0:56:43", "remaining_time": "2:56:45"} {"current_steps": 220, "total_steps": 885, "loss": 0.8204, "learning_rate": 8.644843137107057e-07, "epoch": 0.7445008460236887, "percentage": 24.86, "elapsed_time": "0:57:48", "remaining_time": "2:54:43"} {"current_steps": 225, "total_steps": 885, "loss": 0.8196, "learning_rate": 8.58281433171896e-07, "epoch": 0.7614213197969543, "percentage": 25.42, "elapsed_time": "0:58:53", "remaining_time": "2:52:45"} {"current_steps": 230, "total_steps": 885, "loss": 0.8173, "learning_rate": 8.519630913744724e-07, "epoch": 0.7783417935702199, "percentage": 25.99, "elapsed_time": "0:59:58", "remaining_time": "2:50:46"} {"current_steps": 235, "total_steps": 885, "loss": 0.8248, "learning_rate": 8.455313244934324e-07, "epoch": 0.7952622673434856, "percentage": 26.55, "elapsed_time": "1:01:02", "remaining_time": "2:48:51"} {"current_steps": 240, "total_steps": 885, "loss": 0.8138, "learning_rate": 8.389882052566105e-07, "epoch": 0.8121827411167513, "percentage": 27.12, "elapsed_time": "1:02:09", "remaining_time": "2:47:02"} {"current_steps": 245, "total_steps": 885, "loss": 0.8301, "learning_rate": 8.323358422767128e-07, "epoch": 0.8291032148900169, "percentage": 27.68, "elapsed_time": "1:03:14", "remaining_time": "2:45:11"} {"current_steps": 250, "total_steps": 885, "loss": 0.8105, "learning_rate": 8.255763793717867e-07, "epoch": 0.8460236886632826, "percentage": 28.25, "elapsed_time": "1:04:20", "remaining_time": "2:43:25"} {"current_steps": 250, "total_steps": 885, "eval_loss": 0.815843939781189, "epoch": 0.8460236886632826, "percentage": 28.25, "elapsed_time": "1:06:46", "remaining_time": "2:49:37"} {"current_steps": 255, "total_steps": 885, "loss": 0.8241, "learning_rate": 8.187119948743449e-07, "epoch": 0.8629441624365483, "percentage": 28.81, "elapsed_time": "1:07:51", "remaining_time": "2:47:39"} {"current_steps": 260, "total_steps": 885, "loss": 0.8147, "learning_rate": 8.117449009293668e-07, "epoch": 0.8798646362098139, "percentage": 29.38, "elapsed_time": "1:08:57", "remaining_time": "2:45:45"} {"current_steps": 265, "total_steps": 885, "loss": 0.8281, "learning_rate": 8.046773427814041e-07, "epoch": 0.8967851099830795, "percentage": 29.94, "elapsed_time": "1:10:03", "remaining_time": "2:43:54"} {"current_steps": 270, "total_steps": 885, "loss": 0.8243, "learning_rate": 7.975115980510185e-07, "epoch": 0.9137055837563451, "percentage": 30.51, "elapsed_time": "1:11:09", "remaining_time": "2:42:04"} {"current_steps": 275, "total_steps": 885, "loss": 0.8296, "learning_rate": 7.902499760007867e-07, "epoch": 0.9306260575296108, "percentage": 31.07, "elapsed_time": "1:12:15", "remaining_time": "2:40:16"} {"current_steps": 280, "total_steps": 885, "loss": 0.8113, "learning_rate": 7.828948167911073e-07, "epoch": 0.9475465313028765, "percentage": 31.64, "elapsed_time": "1:13:20", "remaining_time": "2:38:28"} {"current_steps": 285, "total_steps": 885, "loss": 0.8051, "learning_rate": 7.754484907260512e-07, "epoch": 0.9644670050761421, "percentage": 32.2, "elapsed_time": "1:14:26", "remaining_time": "2:36:43"} {"current_steps": 290, "total_steps": 885, "loss": 0.8208, "learning_rate": 7.679133974894982e-07, "epoch": 0.9813874788494078, "percentage": 32.77, "elapsed_time": "1:15:31", "remaining_time": "2:34:56"} {"current_steps": 295, "total_steps": 885, "loss": 0.8058, "learning_rate": 7.602919653718043e-07, "epoch": 0.9983079526226735, "percentage": 33.33, "elapsed_time": "1:16:36", "remaining_time": "2:33:13"} {"current_steps": 300, "total_steps": 885, "loss": 0.7739, "learning_rate": 7.525866504872506e-07, "epoch": 1.015228426395939, "percentage": 33.9, "elapsed_time": "1:17:42", "remaining_time": "2:31:31"} {"current_steps": 300, "total_steps": 885, "eval_loss": 0.8076632022857666, "epoch": 1.015228426395939, "percentage": 33.9, "elapsed_time": "1:20:08", "remaining_time": "2:36:16"} {"current_steps": 305, "total_steps": 885, "loss": 0.7588, "learning_rate": 7.447999359825262e-07, "epoch": 1.0321489001692048, "percentage": 34.46, "elapsed_time": "1:21:13", "remaining_time": "2:34:28"} {"current_steps": 310, "total_steps": 885, "loss": 0.7289, "learning_rate": 7.369343312364993e-07, "epoch": 1.0490693739424704, "percentage": 35.03, "elapsed_time": "1:22:18", "remaining_time": "2:32:40"} {"current_steps": 315, "total_steps": 885, "loss": 0.7482, "learning_rate": 7.289923710515338e-07, "epoch": 1.0659898477157361, "percentage": 35.59, "elapsed_time": "1:23:24", "remaining_time": "2:30:55"} {"current_steps": 320, "total_steps": 885, "loss": 0.7309, "learning_rate": 7.209766148366134e-07, "epoch": 1.0829103214890017, "percentage": 36.16, "elapsed_time": "1:24:29", "remaining_time": "2:29:10"} {"current_steps": 325, "total_steps": 885, "loss": 0.7371, "learning_rate": 7.128896457825363e-07, "epoch": 1.0998307952622675, "percentage": 36.72, "elapsed_time": "1:25:34", "remaining_time": "2:27:27"} {"current_steps": 330, "total_steps": 885, "loss": 0.75, "learning_rate": 7.047340700294453e-07, "epoch": 1.116751269035533, "percentage": 37.29, "elapsed_time": "1:26:39", "remaining_time": "2:25:45"} {"current_steps": 335, "total_steps": 885, "loss": 0.7582, "learning_rate": 6.965125158269618e-07, "epoch": 1.1336717428087986, "percentage": 37.85, "elapsed_time": "1:27:45", "remaining_time": "2:24:05"} {"current_steps": 340, "total_steps": 885, "loss": 0.7455, "learning_rate": 6.882276326871959e-07, "epoch": 1.1505922165820643, "percentage": 38.42, "elapsed_time": "1:28:51", "remaining_time": "2:22:25"} {"current_steps": 345, "total_steps": 885, "loss": 0.7327, "learning_rate": 6.798820905309035e-07, "epoch": 1.16751269035533, "percentage": 38.98, "elapsed_time": "1:29:56", "remaining_time": "2:20:47"} {"current_steps": 350, "total_steps": 885, "loss": 0.7286, "learning_rate": 6.714785788270657e-07, "epoch": 1.1844331641285957, "percentage": 39.55, "elapsed_time": "1:31:01", "remaining_time": "2:19:09"} {"current_steps": 350, "total_steps": 885, "eval_loss": 0.8026402592658997, "epoch": 1.1844331641285957, "percentage": 39.55, "elapsed_time": "1:33:28", "remaining_time": "2:22:52"} {"current_steps": 355, "total_steps": 885, "loss": 0.751, "learning_rate": 6.630198057261709e-07, "epoch": 1.2013536379018612, "percentage": 40.11, "elapsed_time": "1:34:32", "remaining_time": "2:21:09"} {"current_steps": 360, "total_steps": 885, "loss": 0.7379, "learning_rate": 6.545084971874736e-07, "epoch": 1.218274111675127, "percentage": 40.68, "elapsed_time": "1:35:37", "remaining_time": "2:19:27"} {"current_steps": 365, "total_steps": 885, "loss": 0.7451, "learning_rate": 6.459473961005168e-07, "epoch": 1.2351945854483926, "percentage": 41.24, "elapsed_time": "1:36:42", "remaining_time": "2:17:46"} {"current_steps": 370, "total_steps": 885, "loss": 0.745, "learning_rate": 6.373392614011951e-07, "epoch": 1.252115059221658, "percentage": 41.81, "elapsed_time": "1:37:47", "remaining_time": "2:16:07"} {"current_steps": 375, "total_steps": 885, "loss": 0.7508, "learning_rate": 6.286868671826511e-07, "epoch": 1.2690355329949239, "percentage": 42.37, "elapsed_time": "1:38:52", "remaining_time": "2:14:28"} {"current_steps": 380, "total_steps": 885, "loss": 0.7226, "learning_rate": 6.199930018012829e-07, "epoch": 1.2859560067681894, "percentage": 42.94, "elapsed_time": "1:39:58", "remaining_time": "2:12:51"} {"current_steps": 385, "total_steps": 885, "loss": 0.7295, "learning_rate": 6.112604669781572e-07, "epoch": 1.3028764805414552, "percentage": 43.5, "elapsed_time": "1:41:04", "remaining_time": "2:11:15"} {"current_steps": 390, "total_steps": 885, "loss": 0.7356, "learning_rate": 6.024920768961152e-07, "epoch": 1.3197969543147208, "percentage": 44.07, "elapsed_time": "1:42:10", "remaining_time": "2:09:40"} {"current_steps": 395, "total_steps": 885, "loss": 0.7556, "learning_rate": 5.936906572928624e-07, "epoch": 1.3367174280879865, "percentage": 44.63, "elapsed_time": "1:43:15", "remaining_time": "2:08:05"} {"current_steps": 400, "total_steps": 885, "loss": 0.7582, "learning_rate": 5.848590445503344e-07, "epoch": 1.353637901861252, "percentage": 45.2, "elapsed_time": "1:44:20", "remaining_time": "2:06:30"} {"current_steps": 400, "total_steps": 885, "eval_loss": 0.7977383732795715, "epoch": 1.353637901861252, "percentage": 45.2, "elapsed_time": "1:46:46", "remaining_time": "2:09:28"} {"current_steps": 405, "total_steps": 885, "loss": 0.7725, "learning_rate": 5.760000847806337e-07, "epoch": 1.3705583756345177, "percentage": 45.76, "elapsed_time": "1:47:51", "remaining_time": "2:07:49"} {"current_steps": 410, "total_steps": 885, "loss": 0.7514, "learning_rate": 5.671166329088277e-07, "epoch": 1.3874788494077834, "percentage": 46.33, "elapsed_time": "1:48:56", "remaining_time": "2:06:12"} {"current_steps": 415, "total_steps": 885, "loss": 0.7483, "learning_rate": 5.582115517529114e-07, "epoch": 1.404399323181049, "percentage": 46.89, "elapsed_time": "1:50:01", "remaining_time": "2:04:36"} {"current_steps": 420, "total_steps": 885, "loss": 0.7557, "learning_rate": 5.492877111012218e-07, "epoch": 1.4213197969543148, "percentage": 47.46, "elapsed_time": "1:51:07", "remaining_time": "2:03:01"} {"current_steps": 425, "total_steps": 885, "loss": 0.7436, "learning_rate": 5.403479867876087e-07, "epoch": 1.4382402707275803, "percentage": 48.02, "elapsed_time": "1:52:12", "remaining_time": "2:01:27"} {"current_steps": 430, "total_steps": 885, "loss": 0.7424, "learning_rate": 5.313952597646567e-07, "epoch": 1.455160744500846, "percentage": 48.59, "elapsed_time": "1:53:18", "remaining_time": "1:59:53"} {"current_steps": 435, "total_steps": 885, "loss": 0.7271, "learning_rate": 5.224324151752575e-07, "epoch": 1.4720812182741116, "percentage": 49.15, "elapsed_time": "1:54:24", "remaining_time": "1:58:21"} {"current_steps": 440, "total_steps": 885, "loss": 0.7609, "learning_rate": 5.134623414228315e-07, "epoch": 1.4890016920473772, "percentage": 49.72, "elapsed_time": "1:55:29", "remaining_time": "1:56:48"} {"current_steps": 445, "total_steps": 885, "loss": 0.7734, "learning_rate": 5.044879292404989e-07, "epoch": 1.505922165820643, "percentage": 50.28, "elapsed_time": "1:56:36", "remaining_time": "1:55:17"} {"current_steps": 450, "total_steps": 885, "loss": 0.7386, "learning_rate": 4.95512070759501e-07, "epoch": 1.5228426395939088, "percentage": 50.85, "elapsed_time": "1:57:41", "remaining_time": "1:53:45"} {"current_steps": 450, "total_steps": 885, "eval_loss": 0.7924867272377014, "epoch": 1.5228426395939088, "percentage": 50.85, "elapsed_time": "2:00:07", "remaining_time": "1:56:07"} {"current_steps": 455, "total_steps": 885, "loss": 0.7393, "learning_rate": 4.865376585771687e-07, "epoch": 1.5397631133671743, "percentage": 51.41, "elapsed_time": "2:01:12", "remaining_time": "1:54:32"} {"current_steps": 460, "total_steps": 885, "loss": 0.7362, "learning_rate": 4.775675848247427e-07, "epoch": 1.5566835871404399, "percentage": 51.98, "elapsed_time": "2:02:17", "remaining_time": "1:52:59"} {"current_steps": 465, "total_steps": 885, "loss": 0.7356, "learning_rate": 4.686047402353433e-07, "epoch": 1.5736040609137056, "percentage": 52.54, "elapsed_time": "2:03:22", "remaining_time": "1:51:26"} {"current_steps": 470, "total_steps": 885, "loss": 0.7284, "learning_rate": 4.596520132123914e-07, "epoch": 1.5905245346869712, "percentage": 53.11, "elapsed_time": "2:04:27", "remaining_time": "1:49:53"} {"current_steps": 475, "total_steps": 885, "loss": 0.7504, "learning_rate": 4.507122888987782e-07, "epoch": 1.6074450084602367, "percentage": 53.67, "elapsed_time": "2:05:31", "remaining_time": "1:48:21"} {"current_steps": 480, "total_steps": 885, "loss": 0.7505, "learning_rate": 4.417884482470886e-07, "epoch": 1.6243654822335025, "percentage": 54.24, "elapsed_time": "2:06:37", "remaining_time": "1:46:49"} {"current_steps": 485, "total_steps": 885, "loss": 0.7426, "learning_rate": 4.328833670911724e-07, "epoch": 1.6412859560067683, "percentage": 54.8, "elapsed_time": "2:07:42", "remaining_time": "1:45:19"} {"current_steps": 490, "total_steps": 885, "loss": 0.7299, "learning_rate": 4.239999152193664e-07, "epoch": 1.6582064297800339, "percentage": 55.37, "elapsed_time": "2:08:47", "remaining_time": "1:43:49"} {"current_steps": 495, "total_steps": 885, "loss": 0.7259, "learning_rate": 4.1514095544966557e-07, "epoch": 1.6751269035532994, "percentage": 55.93, "elapsed_time": "2:09:52", "remaining_time": "1:42:19"} {"current_steps": 500, "total_steps": 885, "loss": 0.7479, "learning_rate": 4.0630934270713755e-07, "epoch": 1.6920473773265652, "percentage": 56.5, "elapsed_time": "2:10:58", "remaining_time": "1:40:50"} {"current_steps": 500, "total_steps": 885, "eval_loss": 0.7887324690818787, "epoch": 1.6920473773265652, "percentage": 56.5, "elapsed_time": "2:13:24", "remaining_time": "1:42:43"} {"current_steps": 505, "total_steps": 885, "loss": 0.7429, "learning_rate": 3.9750792310388483e-07, "epoch": 1.708967851099831, "percentage": 57.06, "elapsed_time": "2:14:30", "remaining_time": "1:41:12"} {"current_steps": 510, "total_steps": 885, "loss": 0.7207, "learning_rate": 3.8873953302184283e-07, "epoch": 1.7258883248730963, "percentage": 57.63, "elapsed_time": "2:15:35", "remaining_time": "1:39:41"} {"current_steps": 515, "total_steps": 885, "loss": 0.7523, "learning_rate": 3.80006998198717e-07, "epoch": 1.742808798646362, "percentage": 58.19, "elapsed_time": "2:16:41", "remaining_time": "1:38:12"} {"current_steps": 520, "total_steps": 885, "loss": 0.7447, "learning_rate": 3.713131328173489e-07, "epoch": 1.7597292724196278, "percentage": 58.76, "elapsed_time": "2:17:46", "remaining_time": "1:36:42"} {"current_steps": 525, "total_steps": 885, "loss": 0.7406, "learning_rate": 3.62660738598805e-07, "epoch": 1.7766497461928934, "percentage": 59.32, "elapsed_time": "2:18:52", "remaining_time": "1:35:13"} {"current_steps": 530, "total_steps": 885, "loss": 0.7472, "learning_rate": 3.5405260389948333e-07, "epoch": 1.793570219966159, "percentage": 59.89, "elapsed_time": "2:19:57", "remaining_time": "1:33:44"} {"current_steps": 535, "total_steps": 885, "loss": 0.7269, "learning_rate": 3.454915028125263e-07, "epoch": 1.8104906937394247, "percentage": 60.45, "elapsed_time": "2:21:03", "remaining_time": "1:32:16"} {"current_steps": 540, "total_steps": 885, "loss": 0.7194, "learning_rate": 3.369801942738291e-07, "epoch": 1.8274111675126905, "percentage": 61.02, "elapsed_time": "2:22:08", "remaining_time": "1:30:49"} {"current_steps": 545, "total_steps": 885, "loss": 0.7161, "learning_rate": 3.285214211729343e-07, "epoch": 1.844331641285956, "percentage": 61.58, "elapsed_time": "2:23:13", "remaining_time": "1:29:21"} {"current_steps": 550, "total_steps": 885, "loss": 0.7374, "learning_rate": 3.2011790946909666e-07, "epoch": 1.8612521150592216, "percentage": 62.15, "elapsed_time": "2:24:18", "remaining_time": "1:27:53"} {"current_steps": 550, "total_steps": 885, "eval_loss": 0.7846313118934631, "epoch": 1.8612521150592216, "percentage": 62.15, "elapsed_time": "2:26:44", "remaining_time": "1:29:22"} {"current_steps": 555, "total_steps": 885, "loss": 0.7363, "learning_rate": 3.11772367312804e-07, "epoch": 1.8781725888324874, "percentage": 62.71, "elapsed_time": "2:27:50", "remaining_time": "1:27:54"} {"current_steps": 560, "total_steps": 885, "loss": 0.7205, "learning_rate": 3.034874841730382e-07, "epoch": 1.895093062605753, "percentage": 63.28, "elapsed_time": "2:28:55", "remaining_time": "1:26:25"} {"current_steps": 565, "total_steps": 885, "loss": 0.7405, "learning_rate": 2.9526592997055483e-07, "epoch": 1.9120135363790185, "percentage": 63.84, "elapsed_time": "2:30:01", "remaining_time": "1:24:58"} {"current_steps": 570, "total_steps": 885, "loss": 0.7262, "learning_rate": 2.8711035421746363e-07, "epoch": 1.9289340101522843, "percentage": 64.41, "elapsed_time": "2:31:06", "remaining_time": "1:23:30"} {"current_steps": 575, "total_steps": 885, "loss": 0.7321, "learning_rate": 2.7902338516338674e-07, "epoch": 1.94585448392555, "percentage": 64.97, "elapsed_time": "2:32:12", "remaining_time": "1:22:03"} {"current_steps": 580, "total_steps": 885, "loss": 0.7318, "learning_rate": 2.7100762894846627e-07, "epoch": 1.9627749576988156, "percentage": 65.54, "elapsed_time": "2:33:17", "remaining_time": "1:20:36"} {"current_steps": 585, "total_steps": 885, "loss": 0.7254, "learning_rate": 2.6306566876350067e-07, "epoch": 1.9796954314720812, "percentage": 66.1, "elapsed_time": "2:34:22", "remaining_time": "1:19:10"} {"current_steps": 590, "total_steps": 885, "loss": 0.7506, "learning_rate": 2.5520006401747395e-07, "epoch": 1.996615905245347, "percentage": 66.67, "elapsed_time": "2:35:28", "remaining_time": "1:17:44"} {"current_steps": 595, "total_steps": 885, "loss": 0.7056, "learning_rate": 2.474133495127494e-07, "epoch": 2.0135363790186127, "percentage": 67.23, "elapsed_time": "2:36:33", "remaining_time": "1:16:18"} {"current_steps": 600, "total_steps": 885, "loss": 0.7075, "learning_rate": 2.3970803462819583e-07, "epoch": 2.030456852791878, "percentage": 67.8, "elapsed_time": "2:37:39", "remaining_time": "1:14:53"} {"current_steps": 600, "total_steps": 885, "eval_loss": 0.7871306538581848, "epoch": 2.030456852791878, "percentage": 67.8, "elapsed_time": "2:40:05", "remaining_time": "1:16:02"} {"current_steps": 605, "total_steps": 885, "loss": 0.6935, "learning_rate": 2.3208660251050156e-07, "epoch": 2.047377326565144, "percentage": 68.36, "elapsed_time": "2:41:11", "remaining_time": "1:14:36"} {"current_steps": 610, "total_steps": 885, "loss": 0.6892, "learning_rate": 2.2455150927394878e-07, "epoch": 2.0642978003384096, "percentage": 68.93, "elapsed_time": "2:42:17", "remaining_time": "1:13:09"} {"current_steps": 615, "total_steps": 885, "loss": 0.6762, "learning_rate": 2.1710518320889276e-07, "epoch": 2.081218274111675, "percentage": 69.49, "elapsed_time": "2:43:21", "remaining_time": "1:11:43"} {"current_steps": 620, "total_steps": 885, "loss": 0.6789, "learning_rate": 2.097500239992132e-07, "epoch": 2.0981387478849407, "percentage": 70.06, "elapsed_time": "2:44:26", "remaining_time": "1:10:17"} {"current_steps": 625, "total_steps": 885, "loss": 0.6782, "learning_rate": 2.0248840194898155e-07, "epoch": 2.1150592216582065, "percentage": 70.62, "elapsed_time": "2:45:32", "remaining_time": "1:08:51"} {"current_steps": 630, "total_steps": 885, "loss": 0.6694, "learning_rate": 1.9532265721859597e-07, "epoch": 2.1319796954314723, "percentage": 71.19, "elapsed_time": "2:46:38", "remaining_time": "1:07:27"} {"current_steps": 635, "total_steps": 885, "loss": 0.6848, "learning_rate": 1.8825509907063326e-07, "epoch": 2.1489001692047376, "percentage": 71.75, "elapsed_time": "2:47:44", "remaining_time": "1:06:02"} {"current_steps": 640, "total_steps": 885, "loss": 0.6742, "learning_rate": 1.812880051256551e-07, "epoch": 2.1658206429780034, "percentage": 72.32, "elapsed_time": "2:48:49", "remaining_time": "1:04:37"} {"current_steps": 645, "total_steps": 885, "loss": 0.6949, "learning_rate": 1.744236206282132e-07, "epoch": 2.182741116751269, "percentage": 72.88, "elapsed_time": "2:49:54", "remaining_time": "1:03:13"} {"current_steps": 650, "total_steps": 885, "loss": 0.6818, "learning_rate": 1.6766415772328728e-07, "epoch": 2.199661590524535, "percentage": 73.45, "elapsed_time": "2:51:00", "remaining_time": "1:01:49"} {"current_steps": 650, "total_steps": 885, "eval_loss": 0.7874469757080078, "epoch": 2.199661590524535, "percentage": 73.45, "elapsed_time": "2:53:26", "remaining_time": "1:02:42"} {"current_steps": 655, "total_steps": 885, "loss": 0.698, "learning_rate": 1.6101179474338966e-07, "epoch": 2.2165820642978002, "percentage": 74.01, "elapsed_time": "2:54:32", "remaining_time": "1:01:17"} {"current_steps": 660, "total_steps": 885, "loss": 0.6951, "learning_rate": 1.5446867550656767e-07, "epoch": 2.233502538071066, "percentage": 74.58, "elapsed_time": "2:55:37", "remaining_time": "0:59:52"} {"current_steps": 665, "total_steps": 885, "loss": 0.6736, "learning_rate": 1.4803690862552753e-07, "epoch": 2.250423011844332, "percentage": 75.14, "elapsed_time": "2:56:43", "remaining_time": "0:58:27"} {"current_steps": 670, "total_steps": 885, "loss": 0.6796, "learning_rate": 1.4171856682810384e-07, "epoch": 2.267343485617597, "percentage": 75.71, "elapsed_time": "2:57:48", "remaining_time": "0:57:03"} {"current_steps": 675, "total_steps": 885, "loss": 0.673, "learning_rate": 1.3551568628929432e-07, "epoch": 2.284263959390863, "percentage": 76.27, "elapsed_time": "2:58:53", "remaining_time": "0:55:39"} {"current_steps": 680, "total_steps": 885, "loss": 0.6729, "learning_rate": 1.2943026597507267e-07, "epoch": 2.3011844331641287, "percentage": 76.84, "elapsed_time": "2:59:58", "remaining_time": "0:54:15"} {"current_steps": 685, "total_steps": 885, "loss": 0.6919, "learning_rate": 1.2346426699819456e-07, "epoch": 2.3181049069373945, "percentage": 77.4, "elapsed_time": "3:01:03", "remaining_time": "0:52:51"} {"current_steps": 690, "total_steps": 885, "loss": 0.6808, "learning_rate": 1.176196119862008e-07, "epoch": 2.33502538071066, "percentage": 77.97, "elapsed_time": "3:02:09", "remaining_time": "0:51:28"} {"current_steps": 695, "total_steps": 885, "loss": 0.6817, "learning_rate": 1.1189818446182358e-07, "epoch": 2.3519458544839256, "percentage": 78.53, "elapsed_time": "3:03:14", "remaining_time": "0:50:05"} {"current_steps": 700, "total_steps": 885, "loss": 0.6747, "learning_rate": 1.0630182823599399e-07, "epoch": 2.3688663282571913, "percentage": 79.1, "elapsed_time": "3:04:19", "remaining_time": "0:48:42"} {"current_steps": 700, "total_steps": 885, "eval_loss": 0.7868276834487915, "epoch": 2.3688663282571913, "percentage": 79.1, "elapsed_time": "3:06:45", "remaining_time": "0:49:21"} {"current_steps": 705, "total_steps": 885, "loss": 0.6816, "learning_rate": 1.0083234681364932e-07, "epoch": 2.3857868020304567, "percentage": 79.66, "elapsed_time": "3:07:50", "remaining_time": "0:47:57"} {"current_steps": 710, "total_steps": 885, "loss": 0.6798, "learning_rate": 9.549150281252632e-08, "epoch": 2.4027072758037225, "percentage": 80.23, "elapsed_time": "3:08:56", "remaining_time": "0:46:34"} {"current_steps": 715, "total_steps": 885, "loss": 0.6767, "learning_rate": 9.028101739513405e-08, "epoch": 2.4196277495769882, "percentage": 80.79, "elapsed_time": "3:10:02", "remaining_time": "0:45:11"} {"current_steps": 720, "total_steps": 885, "loss": 0.6864, "learning_rate": 8.520256971408452e-08, "epoch": 2.436548223350254, "percentage": 81.36, "elapsed_time": "3:11:07", "remaining_time": "0:43:47"} {"current_steps": 725, "total_steps": 885, "loss": 0.6879, "learning_rate": 8.025779637096137e-08, "epoch": 2.4534686971235193, "percentage": 81.92, "elapsed_time": "3:12:13", "remaining_time": "0:42:25"} {"current_steps": 730, "total_steps": 885, "loss": 0.6955, "learning_rate": 7.544829088890325e-08, "epoch": 2.470389170896785, "percentage": 82.49, "elapsed_time": "3:13:17", "remaining_time": "0:41:02"} {"current_steps": 735, "total_steps": 885, "loss": 0.68, "learning_rate": 7.077560319906694e-08, "epoch": 2.487309644670051, "percentage": 83.05, "elapsed_time": "3:14:21", "remaining_time": "0:39:39"} {"current_steps": 740, "total_steps": 885, "loss": 0.6914, "learning_rate": 6.624123914114122e-08, "epoch": 2.504230118443316, "percentage": 83.62, "elapsed_time": "3:15:27", "remaining_time": "0:38:17"} {"current_steps": 745, "total_steps": 885, "loss": 0.6944, "learning_rate": 6.184665997806831e-08, "epoch": 2.521150592216582, "percentage": 84.18, "elapsed_time": "3:16:33", "remaining_time": "0:36:56"} {"current_steps": 750, "total_steps": 885, "loss": 0.6849, "learning_rate": 5.759328192513074e-08, "epoch": 2.5380710659898478, "percentage": 84.75, "elapsed_time": "3:17:39", "remaining_time": "0:35:34"} {"current_steps": 750, "total_steps": 885, "eval_loss": 0.7860944271087646, "epoch": 2.5380710659898478, "percentage": 84.75, "elapsed_time": "3:20:05", "remaining_time": "0:36:00"} {"current_steps": 755, "total_steps": 885, "loss": 0.6915, "learning_rate": 5.348247569355735e-08, "epoch": 2.5549915397631136, "percentage": 85.31, "elapsed_time": "3:21:11", "remaining_time": "0:34:38"} {"current_steps": 760, "total_steps": 885, "loss": 0.6753, "learning_rate": 4.951556604879048e-08, "epoch": 2.571912013536379, "percentage": 85.88, "elapsed_time": "3:22:16", "remaining_time": "0:33:16"} {"current_steps": 765, "total_steps": 885, "loss": 0.6839, "learning_rate": 4.569383138356275e-08, "epoch": 2.5888324873096447, "percentage": 86.44, "elapsed_time": "3:23:21", "remaining_time": "0:31:54"} {"current_steps": 770, "total_steps": 885, "loss": 0.6748, "learning_rate": 4.201850330591677e-08, "epoch": 2.6057529610829104, "percentage": 87.01, "elapsed_time": "3:24:27", "remaining_time": "0:30:32"} {"current_steps": 775, "total_steps": 885, "loss": 0.6832, "learning_rate": 3.8490766242301353e-08, "epoch": 2.6226734348561758, "percentage": 87.57, "elapsed_time": "3:25:32", "remaining_time": "0:29:10"} {"current_steps": 780, "total_steps": 885, "loss": 0.6902, "learning_rate": 3.5111757055874326e-08, "epoch": 2.6395939086294415, "percentage": 88.14, "elapsed_time": "3:26:38", "remaining_time": "0:27:49"} {"current_steps": 785, "total_steps": 885, "loss": 0.6742, "learning_rate": 3.188256468013139e-08, "epoch": 2.6565143824027073, "percentage": 88.7, "elapsed_time": "3:27:43", "remaining_time": "0:26:27"} {"current_steps": 790, "total_steps": 885, "loss": 0.6769, "learning_rate": 2.8804229767982636e-08, "epoch": 2.673434856175973, "percentage": 89.27, "elapsed_time": "3:28:48", "remaining_time": "0:25:06"} {"current_steps": 795, "total_steps": 885, "loss": 0.6962, "learning_rate": 2.587774435638679e-08, "epoch": 2.6903553299492384, "percentage": 89.83, "elapsed_time": "3:29:53", "remaining_time": "0:23:45"} {"current_steps": 800, "total_steps": 885, "loss": 0.6922, "learning_rate": 2.3104051546654013e-08, "epoch": 2.707275803722504, "percentage": 90.4, "elapsed_time": "3:30:58", "remaining_time": "0:22:24"} {"current_steps": 800, "total_steps": 885, "eval_loss": 0.7856406569480896, "epoch": 2.707275803722504, "percentage": 90.4, "elapsed_time": "3:33:24", "remaining_time": "0:22:40"} {"current_steps": 805, "total_steps": 885, "loss": 0.6888, "learning_rate": 2.048404520051722e-08, "epoch": 2.72419627749577, "percentage": 90.96, "elapsed_time": "3:34:30", "remaining_time": "0:21:19"} {"current_steps": 810, "total_steps": 885, "loss": 0.6814, "learning_rate": 1.8018569652073378e-08, "epoch": 2.7411167512690353, "percentage": 91.53, "elapsed_time": "3:35:35", "remaining_time": "0:19:57"} {"current_steps": 815, "total_steps": 885, "loss": 0.6807, "learning_rate": 1.570841943568446e-08, "epoch": 2.758037225042301, "percentage": 92.09, "elapsed_time": "3:36:41", "remaining_time": "0:18:36"} {"current_steps": 820, "total_steps": 885, "loss": 0.6719, "learning_rate": 1.3554339029927531e-08, "epoch": 2.774957698815567, "percentage": 92.66, "elapsed_time": "3:37:47", "remaining_time": "0:17:15"} {"current_steps": 825, "total_steps": 885, "loss": 0.6869, "learning_rate": 1.1557022617676216e-08, "epoch": 2.7918781725888326, "percentage": 93.22, "elapsed_time": "3:38:52", "remaining_time": "0:15:55"} {"current_steps": 830, "total_steps": 885, "loss": 0.6805, "learning_rate": 9.717113862389992e-09, "epoch": 2.808798646362098, "percentage": 93.79, "elapsed_time": "3:39:57", "remaining_time": "0:14:34"} {"current_steps": 835, "total_steps": 885, "loss": 0.6712, "learning_rate": 8.035205700685165e-09, "epoch": 2.8257191201353637, "percentage": 94.35, "elapsed_time": "3:41:03", "remaining_time": "0:13:14"} {"current_steps": 840, "total_steps": 885, "loss": 0.6857, "learning_rate": 6.511840151252168e-09, "epoch": 2.8426395939086295, "percentage": 94.92, "elapsed_time": "3:42:09", "remaining_time": "0:11:54"} {"current_steps": 845, "total_steps": 885, "loss": 0.6891, "learning_rate": 5.147508140182555e-09, "epoch": 2.859560067681895, "percentage": 95.48, "elapsed_time": "3:43:14", "remaining_time": "0:10:34"} {"current_steps": 850, "total_steps": 885, "loss": 0.6948, "learning_rate": 3.9426493427611175e-09, "epoch": 2.8764805414551606, "percentage": 96.05, "elapsed_time": "3:44:18", "remaining_time": "0:09:14"} {"current_steps": 850, "total_steps": 885, "eval_loss": 0.7854181528091431, "epoch": 2.8764805414551606, "percentage": 96.05, "elapsed_time": "3:46:45", "remaining_time": "0:09:20"} {"current_steps": 855, "total_steps": 885, "loss": 0.6828, "learning_rate": 2.897652041774279e-09, "epoch": 2.8934010152284264, "percentage": 96.61, "elapsed_time": "3:47:50", "remaining_time": "0:07:59"} {"current_steps": 860, "total_steps": 885, "loss": 0.6912, "learning_rate": 2.0128530023804656e-09, "epoch": 2.910321489001692, "percentage": 97.18, "elapsed_time": "3:48:55", "remaining_time": "0:06:39"} {"current_steps": 865, "total_steps": 885, "loss": 0.6955, "learning_rate": 1.2885373635829754e-09, "epoch": 2.927241962774958, "percentage": 97.74, "elapsed_time": "3:50:01", "remaining_time": "0:05:19"} {"current_steps": 870, "total_steps": 885, "loss": 0.691, "learning_rate": 7.249385463395374e-10, "epoch": 2.9441624365482233, "percentage": 98.31, "elapsed_time": "3:51:06", "remaining_time": "0:03:59"} {"current_steps": 875, "total_steps": 885, "loss": 0.6855, "learning_rate": 3.22238178339318e-10, "epoch": 2.961082910321489, "percentage": 98.87, "elapsed_time": "3:52:11", "remaining_time": "0:02:39"} {"current_steps": 880, "total_steps": 885, "loss": 0.692, "learning_rate": 8.056603547090812e-11, "epoch": 2.9780033840947544, "percentage": 99.44, "elapsed_time": "3:53:16", "remaining_time": "0:01:19"} {"current_steps": 885, "total_steps": 885, "loss": 0.6867, "learning_rate": 0.0, "epoch": 2.99492385786802, "percentage": 100.0, "elapsed_time": "3:54:22", "remaining_time": "0:00:00"} {"current_steps": 885, "total_steps": 885, "epoch": 2.99492385786802, "percentage": 100.0, "elapsed_time": "3:54:55", "remaining_time": "0:00:00"}