File size: 44,822 Bytes
79117ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
{"current_steps": 5, "total_steps": 876, "loss": 0.6935, "accuracy": 0.26875001192092896, "learning_rate": 5e-07, "epoch": 0.017094017094017096, "percentage": 0.57, "elapsed_time": "0:02:47", "remaining_time": "8:05:08"}
{"current_steps": 10, "total_steps": 876, "loss": 0.6875, "accuracy": 0.5062500238418579, "learning_rate": 1e-06, "epoch": 0.03418803418803419, "percentage": 1.14, "elapsed_time": "0:05:30", "remaining_time": "7:57:17"}
{"current_steps": 15, "total_steps": 876, "loss": 0.6698, "accuracy": 0.612500011920929, "learning_rate": 9.999177507263144e-07, "epoch": 0.05128205128205128, "percentage": 1.71, "elapsed_time": "0:08:14", "remaining_time": "7:52:44"}
{"current_steps": 20, "total_steps": 876, "loss": 0.6613, "accuracy": 0.6000000238418579, "learning_rate": 9.996710299650301e-07, "epoch": 0.06837606837606838, "percentage": 2.28, "elapsed_time": "0:10:58", "remaining_time": "7:49:38"}
{"current_steps": 25, "total_steps": 876, "loss": 0.6494, "accuracy": 0.581250011920929, "learning_rate": 9.992599188865604e-07, "epoch": 0.08547008547008547, "percentage": 2.85, "elapsed_time": "0:13:41", "remaining_time": "7:45:49"}
{"current_steps": 30, "total_steps": 876, "loss": 0.6295, "accuracy": 0.625, "learning_rate": 9.98684552745256e-07, "epoch": 0.10256410256410256, "percentage": 3.42, "elapsed_time": "0:16:23", "remaining_time": "7:42:17"}
{"current_steps": 35, "total_steps": 876, "loss": 0.6305, "accuracy": 0.6499999761581421, "learning_rate": 9.979451208349055e-07, "epoch": 0.11965811965811966, "percentage": 4.0, "elapsed_time": "0:19:06", "remaining_time": "7:39:00"}
{"current_steps": 40, "total_steps": 876, "loss": 0.5989, "accuracy": 0.699999988079071, "learning_rate": 9.970418664264595e-07, "epoch": 0.13675213675213677, "percentage": 4.57, "elapsed_time": "0:21:49", "remaining_time": "7:36:17"}
{"current_steps": 40, "total_steps": 876, "eval_loss": 0.6069236993789673, "epoch": 0.13675213675213677, "percentage": 4.57, "elapsed_time": "0:30:19", "remaining_time": "10:33:54"}
{"current_steps": 45, "total_steps": 876, "loss": 0.6146, "accuracy": 0.7124999761581421, "learning_rate": 9.95975086687994e-07, "epoch": 0.15384615384615385, "percentage": 5.14, "elapsed_time": "0:33:35", "remaining_time": "10:20:24"}
{"current_steps": 50, "total_steps": 876, "loss": 0.577, "accuracy": 0.75, "learning_rate": 9.947451325869439e-07, "epoch": 0.17094017094017094, "percentage": 5.71, "elapsed_time": "0:36:17", "remaining_time": "9:59:39"}
{"current_steps": 55, "total_steps": 876, "loss": 0.571, "accuracy": 0.75, "learning_rate": 9.933524087746347e-07, "epoch": 0.18803418803418803, "percentage": 6.28, "elapsed_time": "0:39:00", "remaining_time": "9:42:17"}
{"current_steps": 60, "total_steps": 876, "loss": 0.5762, "accuracy": 0.699999988079071, "learning_rate": 9.917973734531549e-07, "epoch": 0.20512820512820512, "percentage": 6.85, "elapsed_time": "0:41:43", "remaining_time": "9:27:32"}
{"current_steps": 65, "total_steps": 876, "loss": 0.5643, "accuracy": 0.706250011920929, "learning_rate": 9.90080538224607e-07, "epoch": 0.2222222222222222, "percentage": 7.42, "elapsed_time": "0:44:26", "remaining_time": "9:14:35"}
{"current_steps": 70, "total_steps": 876, "loss": 0.5464, "accuracy": 0.699999988079071, "learning_rate": 9.882024679227938e-07, "epoch": 0.23931623931623933, "percentage": 7.99, "elapsed_time": "0:47:09", "remaining_time": "9:02:56"}
{"current_steps": 75, "total_steps": 876, "loss": 0.5553, "accuracy": 0.6875, "learning_rate": 9.861637804273881e-07, "epoch": 0.2564102564102564, "percentage": 8.56, "elapsed_time": "0:49:51", "remaining_time": "8:52:29"}
{"current_steps": 80, "total_steps": 876, "loss": 0.5452, "accuracy": 0.6812499761581421, "learning_rate": 9.83965146460653e-07, "epoch": 0.27350427350427353, "percentage": 9.13, "elapsed_time": "0:52:35", "remaining_time": "8:43:20"}
{"current_steps": 80, "total_steps": 876, "eval_loss": 0.5331124663352966, "epoch": 0.27350427350427353, "percentage": 9.13, "elapsed_time": "1:01:05", "remaining_time": "10:07:55"}
{"current_steps": 85, "total_steps": 876, "loss": 0.5581, "accuracy": 0.7437499761581421, "learning_rate": 9.816072893667758e-07, "epoch": 0.2905982905982906, "percentage": 9.7, "elapsed_time": "1:04:21", "remaining_time": "9:58:56"}
{"current_steps": 90, "total_steps": 876, "loss": 0.5208, "accuracy": 0.637499988079071, "learning_rate": 9.790909848738904e-07, "epoch": 0.3076923076923077, "percentage": 10.27, "elapsed_time": "1:07:05", "remaining_time": "9:45:51"}
{"current_steps": 95, "total_steps": 876, "loss": 0.5242, "accuracy": 0.7749999761581421, "learning_rate": 9.764170608388647e-07, "epoch": 0.3247863247863248, "percentage": 10.84, "elapsed_time": "1:09:47", "remaining_time": "9:33:45"}
{"current_steps": 100, "total_steps": 876, "loss": 0.5002, "accuracy": 0.706250011920929, "learning_rate": 9.735863969749371e-07, "epoch": 0.3418803418803419, "percentage": 11.42, "elapsed_time": "1:12:30", "remaining_time": "9:22:42"}
{"current_steps": 105, "total_steps": 876, "loss": 0.5026, "accuracy": 0.7124999761581421, "learning_rate": 9.705999245622956e-07, "epoch": 0.358974358974359, "percentage": 11.99, "elapsed_time": "1:15:13", "remaining_time": "9:12:25"}
{"current_steps": 110, "total_steps": 876, "loss": 0.5206, "accuracy": 0.699999988079071, "learning_rate": 9.674586261416873e-07, "epoch": 0.37606837606837606, "percentage": 12.56, "elapsed_time": "1:17:58", "remaining_time": "9:02:58"}
{"current_steps": 115, "total_steps": 876, "loss": 0.4801, "accuracy": 0.7437499761581421, "learning_rate": 9.641635351911664e-07, "epoch": 0.39316239316239315, "percentage": 13.13, "elapsed_time": "1:20:41", "remaining_time": "8:53:57"}
{"current_steps": 120, "total_steps": 876, "loss": 0.5026, "accuracy": 0.737500011920929, "learning_rate": 9.607157357860821e-07, "epoch": 0.41025641025641024, "percentage": 13.7, "elapsed_time": "1:23:25", "remaining_time": "8:45:32"}
{"current_steps": 120, "total_steps": 876, "eval_loss": 0.49246644973754883, "epoch": 0.41025641025641024, "percentage": 13.7, "elapsed_time": "1:31:55", "remaining_time": "9:39:06"}
{"current_steps": 125, "total_steps": 876, "loss": 0.5017, "accuracy": 0.7124999761581421, "learning_rate": 9.571163622424225e-07, "epoch": 0.42735042735042733, "percentage": 14.27, "elapsed_time": "1:35:10", "remaining_time": "9:31:48"}
{"current_steps": 130, "total_steps": 876, "loss": 0.4983, "accuracy": 0.6937500238418579, "learning_rate": 9.533665987436261e-07, "epoch": 0.4444444444444444, "percentage": 14.84, "elapsed_time": "1:37:53", "remaining_time": "9:21:43"}
{"current_steps": 135, "total_steps": 876, "loss": 0.492, "accuracy": 0.7124999761581421, "learning_rate": 9.494676789509899e-07, "epoch": 0.46153846153846156, "percentage": 15.41, "elapsed_time": "1:40:36", "remaining_time": "9:12:13"}
{"current_steps": 140, "total_steps": 876, "loss": 0.4753, "accuracy": 0.731249988079071, "learning_rate": 9.454208855977985e-07, "epoch": 0.47863247863247865, "percentage": 15.98, "elapsed_time": "1:43:19", "remaining_time": "9:03:13"}
{"current_steps": 145, "total_steps": 876, "loss": 0.4803, "accuracy": 0.7875000238418579, "learning_rate": 9.41227550067308e-07, "epoch": 0.49572649572649574, "percentage": 16.55, "elapsed_time": "1:46:02", "remaining_time": "8:54:38"}
{"current_steps": 150, "total_steps": 876, "loss": 0.4895, "accuracy": 0.78125, "learning_rate": 9.36889051954725e-07, "epoch": 0.5128205128205128, "percentage": 17.12, "elapsed_time": "1:48:45", "remaining_time": "8:46:23"}
{"current_steps": 155, "total_steps": 876, "loss": 0.4608, "accuracy": 0.793749988079071, "learning_rate": 9.324068186133245e-07, "epoch": 0.5299145299145299, "percentage": 17.69, "elapsed_time": "1:51:29", "remaining_time": "8:38:34"}
{"current_steps": 160, "total_steps": 876, "loss": 0.4511, "accuracy": 0.7124999761581421, "learning_rate": 9.277823246848536e-07, "epoch": 0.5470085470085471, "percentage": 18.26, "elapsed_time": "1:54:11", "remaining_time": "8:31:01"}
{"current_steps": 160, "total_steps": 876, "eval_loss": 0.4683005213737488, "epoch": 0.5470085470085471, "percentage": 18.26, "elapsed_time": "2:02:41", "remaining_time": "9:09:03"}
{"current_steps": 165, "total_steps": 876, "loss": 0.4944, "accuracy": 0.7562500238418579, "learning_rate": 9.230170916143793e-07, "epoch": 0.5641025641025641, "percentage": 18.84, "elapsed_time": "2:05:55", "remaining_time": "9:02:37"}
{"current_steps": 170, "total_steps": 876, "loss": 0.4813, "accuracy": 0.78125, "learning_rate": 9.181126871497378e-07, "epoch": 0.5811965811965812, "percentage": 19.41, "elapsed_time": "2:08:38", "remaining_time": "8:54:15"}
{"current_steps": 175, "total_steps": 876, "loss": 0.4863, "accuracy": 0.768750011920929, "learning_rate": 9.130707248257491e-07, "epoch": 0.5982905982905983, "percentage": 19.98, "elapsed_time": "2:11:21", "remaining_time": "8:46:10"}
{"current_steps": 180, "total_steps": 876, "loss": 0.4553, "accuracy": 0.8062499761581421, "learning_rate": 9.078928634333698e-07, "epoch": 0.6153846153846154, "percentage": 20.55, "elapsed_time": "2:14:04", "remaining_time": "8:38:24"}
{"current_steps": 185, "total_steps": 876, "loss": 0.4854, "accuracy": 0.7562500238418579, "learning_rate": 9.025808064739549e-07, "epoch": 0.6324786324786325, "percentage": 21.12, "elapsed_time": "2:16:48", "remaining_time": "8:30:58"}
{"current_steps": 190, "total_steps": 876, "loss": 0.4681, "accuracy": 0.7562500238418579, "learning_rate": 8.971363015988113e-07, "epoch": 0.6495726495726496, "percentage": 21.69, "elapsed_time": "2:19:30", "remaining_time": "8:23:43"}
{"current_steps": 195, "total_steps": 876, "loss": 0.4935, "accuracy": 0.7437499761581421, "learning_rate": 8.91561140034225e-07, "epoch": 0.6666666666666666, "percentage": 22.26, "elapsed_time": "2:22:13", "remaining_time": "8:16:40"}
{"current_steps": 200, "total_steps": 876, "loss": 0.4562, "accuracy": 0.7562500238418579, "learning_rate": 8.858571559921537e-07, "epoch": 0.6837606837606838, "percentage": 22.83, "elapsed_time": "2:24:56", "remaining_time": "8:09:55"}
{"current_steps": 200, "total_steps": 876, "eval_loss": 0.4528014361858368, "epoch": 0.6837606837606838, "percentage": 22.83, "elapsed_time": "2:33:27", "remaining_time": "8:38:42"}
{"current_steps": 205, "total_steps": 876, "loss": 0.4653, "accuracy": 0.768750011920929, "learning_rate": 8.800262260667754e-07, "epoch": 0.7008547008547008, "percentage": 23.4, "elapsed_time": "2:36:41", "remaining_time": "8:32:52"}
{"current_steps": 210, "total_steps": 876, "loss": 0.4426, "accuracy": 0.731249988079071, "learning_rate": 8.740702686170954e-07, "epoch": 0.717948717948718, "percentage": 23.97, "elapsed_time": "2:39:24", "remaining_time": "8:25:34"}
{"current_steps": 215, "total_steps": 876, "loss": 0.4521, "accuracy": 0.7562500238418579, "learning_rate": 8.679912431358109e-07, "epoch": 0.7350427350427351, "percentage": 24.54, "elapsed_time": "2:42:08", "remaining_time": "8:18:28"}
{"current_steps": 220, "total_steps": 876, "loss": 0.4655, "accuracy": 0.793749988079071, "learning_rate": 8.617911496046445e-07, "epoch": 0.7521367521367521, "percentage": 25.11, "elapsed_time": "2:44:51", "remaining_time": "8:11:34"}
{"current_steps": 225, "total_steps": 876, "loss": 0.4693, "accuracy": 0.731249988079071, "learning_rate": 8.554720278363547e-07, "epoch": 0.7692307692307693, "percentage": 25.68, "elapsed_time": "2:47:34", "remaining_time": "8:04:51"}
{"current_steps": 230, "total_steps": 876, "loss": 0.4524, "accuracy": 0.762499988079071, "learning_rate": 8.490359568036445e-07, "epoch": 0.7863247863247863, "percentage": 26.26, "elapsed_time": "2:50:17", "remaining_time": "7:58:18"}
{"current_steps": 235, "total_steps": 876, "loss": 0.4536, "accuracy": 0.7749999761581421, "learning_rate": 8.424850539551856e-07, "epoch": 0.8034188034188035, "percentage": 26.83, "elapsed_time": "2:53:01", "remaining_time": "7:51:56"}
{"current_steps": 240, "total_steps": 876, "loss": 0.4189, "accuracy": 0.793749988079071, "learning_rate": 8.358214745189829e-07, "epoch": 0.8205128205128205, "percentage": 27.4, "elapsed_time": "2:55:44", "remaining_time": "7:45:42"}
{"current_steps": 240, "total_steps": 876, "eval_loss": 0.44941428303718567, "epoch": 0.8205128205128205, "percentage": 27.4, "elapsed_time": "3:04:14", "remaining_time": "8:08:15"}
{"current_steps": 245, "total_steps": 876, "loss": 0.4441, "accuracy": 0.7562500238418579, "learning_rate": 8.290474107933114e-07, "epoch": 0.8376068376068376, "percentage": 27.97, "elapsed_time": "3:07:29", "remaining_time": "8:02:53"}
{"current_steps": 250, "total_steps": 876, "loss": 0.4919, "accuracy": 0.78125, "learning_rate": 8.221650914254565e-07, "epoch": 0.8547008547008547, "percentage": 28.54, "elapsed_time": "3:10:13", "remaining_time": "7:56:20"}
{"current_steps": 255, "total_steps": 876, "loss": 0.4651, "accuracy": 0.71875, "learning_rate": 8.151767806784953e-07, "epoch": 0.8717948717948718, "percentage": 29.11, "elapsed_time": "3:12:57", "remaining_time": "7:49:53"}
{"current_steps": 260, "total_steps": 876, "loss": 0.4474, "accuracy": 0.731249988079071, "learning_rate": 8.080847776863608e-07, "epoch": 0.8888888888888888, "percentage": 29.68, "elapsed_time": "3:15:39", "remaining_time": "7:43:34"}
{"current_steps": 265, "total_steps": 876, "loss": 0.4427, "accuracy": 0.7562500238418579, "learning_rate": 8.008914156974333e-07, "epoch": 0.905982905982906, "percentage": 30.25, "elapsed_time": "3:18:23", "remaining_time": "7:37:25"}
{"current_steps": 270, "total_steps": 876, "loss": 0.445, "accuracy": 0.737500011920929, "learning_rate": 7.935990613069086e-07, "epoch": 0.9230769230769231, "percentage": 30.82, "elapsed_time": "3:21:06", "remaining_time": "7:31:22"}
{"current_steps": 275, "total_steps": 876, "loss": 0.4173, "accuracy": 0.7875000238418579, "learning_rate": 7.862101136781946e-07, "epoch": 0.9401709401709402, "percentage": 31.39, "elapsed_time": "3:23:49", "remaining_time": "7:25:27"}
{"current_steps": 280, "total_steps": 876, "loss": 0.4484, "accuracy": 0.75, "learning_rate": 7.78727003753595e-07, "epoch": 0.9572649572649573, "percentage": 31.96, "elapsed_time": "3:26:32", "remaining_time": "7:19:39"}
{"current_steps": 280, "total_steps": 876, "eval_loss": 0.4431803524494171, "epoch": 0.9572649572649573, "percentage": 31.96, "elapsed_time": "3:35:03", "remaining_time": "7:37:45"}
{"current_steps": 285, "total_steps": 876, "loss": 0.4233, "accuracy": 0.75, "learning_rate": 7.711521934545342e-07, "epoch": 0.9743589743589743, "percentage": 32.53, "elapsed_time": "3:38:19", "remaining_time": "7:32:44"}
{"current_steps": 290, "total_steps": 876, "loss": 0.4064, "accuracy": 0.8062499761581421, "learning_rate": 7.63488174871594e-07, "epoch": 0.9914529914529915, "percentage": 33.11, "elapsed_time": "3:41:03", "remaining_time": "7:26:41"}
{"current_steps": 295, "total_steps": 876, "loss": 0.3182, "accuracy": 0.84375, "learning_rate": 7.557374694446221e-07, "epoch": 1.0085470085470085, "percentage": 33.68, "elapsed_time": "3:43:46", "remaining_time": "7:20:42"}
{"current_steps": 300, "total_steps": 876, "loss": 0.2168, "accuracy": 0.918749988079071, "learning_rate": 7.479026271331863e-07, "epoch": 1.0256410256410255, "percentage": 34.25, "elapsed_time": "3:46:28", "remaining_time": "7:14:49"}
{"current_steps": 305, "total_steps": 876, "loss": 0.2127, "accuracy": 0.893750011920929, "learning_rate": 7.399862255776448e-07, "epoch": 1.0427350427350428, "percentage": 34.82, "elapsed_time": "3:49:11", "remaining_time": "7:09:04"}
{"current_steps": 310, "total_steps": 876, "loss": 0.2371, "accuracy": 0.9125000238418579, "learning_rate": 7.319908692511102e-07, "epoch": 1.0598290598290598, "percentage": 35.39, "elapsed_time": "3:51:54", "remaining_time": "7:03:26"}
{"current_steps": 315, "total_steps": 876, "loss": 0.2077, "accuracy": 0.925000011920929, "learning_rate": 7.239191886025853e-07, "epoch": 1.0769230769230769, "percentage": 35.96, "elapsed_time": "3:54:37", "remaining_time": "6:57:50"}
{"current_steps": 320, "total_steps": 876, "loss": 0.222, "accuracy": 0.8999999761581421, "learning_rate": 7.15773839191553e-07, "epoch": 1.0940170940170941, "percentage": 36.53, "elapsed_time": "3:57:21", "remaining_time": "6:52:23"}
{"current_steps": 320, "total_steps": 876, "eval_loss": 0.45035940408706665, "epoch": 1.0940170940170941, "percentage": 36.53, "elapsed_time": "4:05:50", "remaining_time": "7:07:09"}
{"current_steps": 325, "total_steps": 876, "loss": 0.2187, "accuracy": 0.9125000238418579, "learning_rate": 7.075575008143054e-07, "epoch": 1.1111111111111112, "percentage": 37.1, "elapsed_time": "4:09:05", "remaining_time": "7:02:17"}
{"current_steps": 330, "total_steps": 876, "loss": 0.2223, "accuracy": 0.925000011920929, "learning_rate": 6.99272876622298e-07, "epoch": 1.1282051282051282, "percentage": 37.67, "elapsed_time": "4:11:47", "remaining_time": "6:56:36"}
{"current_steps": 335, "total_steps": 876, "loss": 0.2107, "accuracy": 0.875, "learning_rate": 6.909226922328211e-07, "epoch": 1.1452991452991452, "percentage": 38.24, "elapsed_time": "4:14:31", "remaining_time": "6:51:02"}
{"current_steps": 340, "total_steps": 876, "loss": 0.2184, "accuracy": 0.925000011920929, "learning_rate": 6.82509694832279e-07, "epoch": 1.1623931623931625, "percentage": 38.81, "elapsed_time": "4:17:13", "remaining_time": "6:45:31"}
{"current_steps": 345, "total_steps": 876, "loss": 0.1978, "accuracy": 0.9125000238418579, "learning_rate": 6.740366522723752e-07, "epoch": 1.1794871794871795, "percentage": 39.38, "elapsed_time": "4:19:57", "remaining_time": "6:40:05"}
{"current_steps": 350, "total_steps": 876, "loss": 0.2039, "accuracy": 0.9375, "learning_rate": 6.655063521594949e-07, "epoch": 1.1965811965811965, "percentage": 39.95, "elapsed_time": "4:22:40", "remaining_time": "6:34:45"}
{"current_steps": 355, "total_steps": 876, "loss": 0.1915, "accuracy": 0.9125000238418579, "learning_rate": 6.569216009375929e-07, "epoch": 1.2136752136752136, "percentage": 40.53, "elapsed_time": "4:25:23", "remaining_time": "6:29:29"}
{"current_steps": 360, "total_steps": 876, "loss": 0.2018, "accuracy": 0.893750011920929, "learning_rate": 6.482852229648801e-07, "epoch": 1.2307692307692308, "percentage": 41.1, "elapsed_time": "4:28:06", "remaining_time": "6:24:17"}
{"current_steps": 360, "total_steps": 876, "eval_loss": 0.44376233220100403, "epoch": 1.2307692307692308, "percentage": 41.1, "elapsed_time": "4:36:37", "remaining_time": "6:36:29"}
{"current_steps": 365, "total_steps": 876, "loss": 0.2058, "accuracy": 0.8687499761581421, "learning_rate": 6.396000595846187e-07, "epoch": 1.2478632478632479, "percentage": 41.67, "elapsed_time": "4:39:52", "remaining_time": "6:31:49"}
{"current_steps": 370, "total_steps": 876, "loss": 0.1952, "accuracy": 0.9375, "learning_rate": 6.30868968190328e-07, "epoch": 1.264957264957265, "percentage": 42.24, "elapsed_time": "4:42:35", "remaining_time": "6:26:27"}
{"current_steps": 375, "total_steps": 876, "loss": 0.1874, "accuracy": 0.918749988079071, "learning_rate": 6.220948212857111e-07, "epoch": 1.282051282051282, "percentage": 42.81, "elapsed_time": "4:45:17", "remaining_time": "6:21:09"}
{"current_steps": 380, "total_steps": 876, "loss": 0.2029, "accuracy": 0.9125000238418579, "learning_rate": 6.13280505539608e-07, "epoch": 1.2991452991452992, "percentage": 43.38, "elapsed_time": "4:47:59", "remaining_time": "6:15:54"}
{"current_steps": 385, "total_steps": 876, "loss": 0.1954, "accuracy": 0.893750011920929, "learning_rate": 6.044289208362914e-07, "epoch": 1.3162393162393162, "percentage": 43.95, "elapsed_time": "4:50:43", "remaining_time": "6:10:45"}
{"current_steps": 390, "total_steps": 876, "loss": 0.2087, "accuracy": 0.9125000238418579, "learning_rate": 5.955429793214128e-07, "epoch": 1.3333333333333333, "percentage": 44.52, "elapsed_time": "4:53:39", "remaining_time": "6:05:56"}
{"current_steps": 395, "total_steps": 876, "loss": 0.2183, "accuracy": 0.9125000238418579, "learning_rate": 5.866256044439142e-07, "epoch": 1.3504273504273505, "percentage": 45.09, "elapsed_time": "4:56:38", "remaining_time": "6:01:13"}
{"current_steps": 400, "total_steps": 876, "loss": 0.2017, "accuracy": 0.9125000238418579, "learning_rate": 5.776797299942235e-07, "epoch": 1.3675213675213675, "percentage": 45.66, "elapsed_time": "4:59:37", "remaining_time": "5:56:33"}
{"current_steps": 400, "total_steps": 876, "eval_loss": 0.43498364090919495, "epoch": 1.3675213675213675, "percentage": 45.66, "elapsed_time": "5:08:41", "remaining_time": "6:07:20"}
{"current_steps": 405, "total_steps": 876, "loss": 0.2194, "accuracy": 0.875, "learning_rate": 5.687082991390443e-07, "epoch": 1.3846153846153846, "percentage": 46.23, "elapsed_time": "5:12:09", "remaining_time": "6:03:02"}
{"current_steps": 410, "total_steps": 876, "loss": 0.1923, "accuracy": 0.9375, "learning_rate": 5.597142634530638e-07, "epoch": 1.4017094017094016, "percentage": 46.8, "elapsed_time": "5:15:07", "remaining_time": "5:58:09"}
{"current_steps": 415, "total_steps": 876, "loss": 0.2273, "accuracy": 0.918749988079071, "learning_rate": 5.507005819478924e-07, "epoch": 1.4188034188034189, "percentage": 47.37, "elapsed_time": "5:18:05", "remaining_time": "5:53:21"}
{"current_steps": 420, "total_steps": 876, "loss": 0.2022, "accuracy": 0.9125000238418579, "learning_rate": 5.416702200985584e-07, "epoch": 1.435897435897436, "percentage": 47.95, "elapsed_time": "5:21:04", "remaining_time": "5:48:35"}
{"current_steps": 425, "total_steps": 876, "loss": 0.2124, "accuracy": 0.9375, "learning_rate": 5.326261488678748e-07, "epoch": 1.452991452991453, "percentage": 48.52, "elapsed_time": "5:24:02", "remaining_time": "5:43:51"}
{"current_steps": 430, "total_steps": 876, "loss": 0.1905, "accuracy": 0.9375, "learning_rate": 5.235713437290011e-07, "epoch": 1.4700854700854702, "percentage": 49.09, "elapsed_time": "5:27:00", "remaining_time": "5:39:10"}
{"current_steps": 435, "total_steps": 876, "loss": 0.1887, "accuracy": 0.949999988079071, "learning_rate": 5.145087836865213e-07, "epoch": 1.4871794871794872, "percentage": 49.66, "elapsed_time": "5:29:58", "remaining_time": "5:34:31"}
{"current_steps": 440, "total_steps": 876, "loss": 0.1999, "accuracy": 0.9375, "learning_rate": 5.054414502963604e-07, "epoch": 1.5042735042735043, "percentage": 50.23, "elapsed_time": "5:32:55", "remaining_time": "5:29:54"}
{"current_steps": 440, "total_steps": 876, "eval_loss": 0.42879074811935425, "epoch": 1.5042735042735043, "percentage": 50.23, "elapsed_time": "5:42:05", "remaining_time": "5:38:58"}
{"current_steps": 445, "total_steps": 876, "loss": 0.2006, "accuracy": 0.918749988079071, "learning_rate": 4.963723266848609e-07, "epoch": 1.5213675213675213, "percentage": 50.8, "elapsed_time": "5:45:37", "remaining_time": "5:34:45"}
{"current_steps": 450, "total_steps": 876, "loss": 0.1836, "accuracy": 0.9437500238418579, "learning_rate": 4.873043965673426e-07, "epoch": 1.5384615384615383, "percentage": 51.37, "elapsed_time": "5:48:35", "remaining_time": "5:29:59"}
{"current_steps": 455, "total_steps": 876, "loss": 0.2032, "accuracy": 0.925000011920929, "learning_rate": 4.782406432664698e-07, "epoch": 1.5555555555555556, "percentage": 51.94, "elapsed_time": "5:51:33", "remaining_time": "5:25:17"}
{"current_steps": 460, "total_steps": 876, "loss": 0.2007, "accuracy": 0.90625, "learning_rate": 4.691840487307457e-07, "epoch": 1.5726495726495726, "percentage": 52.51, "elapsed_time": "5:54:31", "remaining_time": "5:20:37"}
{"current_steps": 465, "total_steps": 876, "loss": 0.1872, "accuracy": 0.925000011920929, "learning_rate": 4.601375925534609e-07, "epoch": 1.5897435897435899, "percentage": 53.08, "elapsed_time": "5:57:30", "remaining_time": "5:15:59"}
{"current_steps": 470, "total_steps": 876, "loss": 0.1678, "accuracy": 0.981249988079071, "learning_rate": 4.5110425099241564e-07, "epoch": 1.606837606837607, "percentage": 53.65, "elapsed_time": "6:00:28", "remaining_time": "5:11:23"}
{"current_steps": 475, "total_steps": 876, "loss": 0.1657, "accuracy": 0.925000011920929, "learning_rate": 4.4208699599073867e-07, "epoch": 1.623931623931624, "percentage": 54.22, "elapsed_time": "6:03:26", "remaining_time": "5:06:49"}
{"current_steps": 480, "total_steps": 876, "loss": 0.1837, "accuracy": 0.925000011920929, "learning_rate": 4.330887941991288e-07, "epoch": 1.641025641025641, "percentage": 54.79, "elapsed_time": "6:06:25", "remaining_time": "5:02:17"}
{"current_steps": 480, "total_steps": 876, "eval_loss": 0.42615845799446106, "epoch": 1.641025641025641, "percentage": 54.79, "elapsed_time": "6:15:34", "remaining_time": "5:09:50"}
{"current_steps": 485, "total_steps": 876, "loss": 0.1703, "accuracy": 0.949999988079071, "learning_rate": 4.241126059998332e-07, "epoch": 1.658119658119658, "percentage": 55.37, "elapsed_time": "6:19:07", "remaining_time": "5:05:38"}
{"current_steps": 490, "total_steps": 876, "loss": 0.2076, "accuracy": 0.90625, "learning_rate": 4.151613845326911e-07, "epoch": 1.6752136752136753, "percentage": 55.94, "elapsed_time": "6:22:04", "remaining_time": "5:00:58"}
{"current_steps": 495, "total_steps": 876, "loss": 0.1886, "accuracy": 0.925000011920929, "learning_rate": 4.062380747235595e-07, "epoch": 1.6923076923076923, "percentage": 56.51, "elapsed_time": "6:25:00", "remaining_time": "4:56:20"}
{"current_steps": 500, "total_steps": 876, "loss": 0.1921, "accuracy": 0.9437500238418579, "learning_rate": 3.9734561231544143e-07, "epoch": 1.7094017094017095, "percentage": 57.08, "elapsed_time": "6:27:43", "remaining_time": "4:51:33"}
{"current_steps": 505, "total_steps": 876, "loss": 0.1821, "accuracy": 0.918749988079071, "learning_rate": 3.8848692290263427e-07, "epoch": 1.7264957264957266, "percentage": 57.65, "elapsed_time": "6:30:25", "remaining_time": "4:46:49"}
{"current_steps": 510, "total_steps": 876, "loss": 0.1997, "accuracy": 0.9375, "learning_rate": 3.796649209682177e-07, "epoch": 1.7435897435897436, "percentage": 58.22, "elapsed_time": "6:33:08", "remaining_time": "4:42:08"}
{"current_steps": 515, "total_steps": 876, "loss": 0.168, "accuracy": 0.925000011920929, "learning_rate": 3.708825089251979e-07, "epoch": 1.7606837606837606, "percentage": 58.79, "elapsed_time": "6:35:52", "remaining_time": "4:37:29"}
{"current_steps": 520, "total_steps": 876, "loss": 0.1942, "accuracy": 0.9312499761581421, "learning_rate": 3.6214257616162237e-07, "epoch": 1.7777777777777777, "percentage": 59.36, "elapsed_time": "6:38:36", "remaining_time": "4:32:53"}
{"current_steps": 520, "total_steps": 876, "eval_loss": 0.41628795862197876, "epoch": 1.7777777777777777, "percentage": 59.36, "elapsed_time": "6:47:06", "remaining_time": "4:38:42"}
{"current_steps": 525, "total_steps": 876, "loss": 0.1878, "accuracy": 0.875, "learning_rate": 3.5344799808997837e-07, "epoch": 1.7948717948717947, "percentage": 59.93, "elapsed_time": "6:50:23", "remaining_time": "4:34:22"}
{"current_steps": 530, "total_steps": 876, "loss": 0.1854, "accuracy": 0.9312499761581421, "learning_rate": 3.448016352011913e-07, "epoch": 1.811965811965812, "percentage": 60.5, "elapsed_time": "6:53:06", "remaining_time": "4:29:41"}
{"current_steps": 535, "total_steps": 876, "loss": 0.197, "accuracy": 0.925000011920929, "learning_rate": 3.3620633212353176e-07, "epoch": 1.8290598290598292, "percentage": 61.07, "elapsed_time": "6:55:49", "remaining_time": "4:25:02"}
{"current_steps": 540, "total_steps": 876, "loss": 0.1988, "accuracy": 0.9125000238418579, "learning_rate": 3.2766491668674054e-07, "epoch": 1.8461538461538463, "percentage": 61.64, "elapsed_time": "6:58:33", "remaining_time": "4:20:26"}
{"current_steps": 545, "total_steps": 876, "loss": 0.2022, "accuracy": 0.90625, "learning_rate": 3.1918019899168167e-07, "epoch": 1.8632478632478633, "percentage": 62.21, "elapsed_time": "7:01:16", "remaining_time": "4:15:51"}
{"current_steps": 550, "total_steps": 876, "loss": 0.196, "accuracy": 0.9375, "learning_rate": 3.107549704858263e-07, "epoch": 1.8803418803418803, "percentage": 62.79, "elapsed_time": "7:03:59", "remaining_time": "4:11:18"}
{"current_steps": 555, "total_steps": 876, "loss": 0.1672, "accuracy": 0.96875, "learning_rate": 3.0239200304487555e-07, "epoch": 1.8974358974358974, "percentage": 63.36, "elapsed_time": "7:06:42", "remaining_time": "4:06:47"}
{"current_steps": 560, "total_steps": 876, "loss": 0.1821, "accuracy": 0.918749988079071, "learning_rate": 2.940940480608207e-07, "epoch": 1.9145299145299144, "percentage": 63.93, "elapsed_time": "7:09:25", "remaining_time": "4:02:18"}
{"current_steps": 560, "total_steps": 876, "eval_loss": 0.4165222644805908, "epoch": 1.9145299145299144, "percentage": 63.93, "elapsed_time": "7:17:55", "remaining_time": "4:07:06"}
{"current_steps": 565, "total_steps": 876, "loss": 0.2078, "accuracy": 0.893750011920929, "learning_rate": 2.858638355367439e-07, "epoch": 1.9316239316239316, "percentage": 64.5, "elapsed_time": "7:21:11", "remaining_time": "4:02:50"}
{"current_steps": 570, "total_steps": 876, "loss": 0.179, "accuracy": 0.9312499761581421, "learning_rate": 2.7770407318865484e-07, "epoch": 1.9487179487179487, "percentage": 65.07, "elapsed_time": "7:23:54", "remaining_time": "3:58:18"}
{"current_steps": 575, "total_steps": 876, "loss": 0.2082, "accuracy": 0.893750011920929, "learning_rate": 2.696174455546599e-07, "epoch": 1.965811965811966, "percentage": 65.64, "elapsed_time": "7:26:36", "remaining_time": "3:53:47"}
{"current_steps": 580, "total_steps": 876, "loss": 0.1861, "accuracy": 0.956250011920929, "learning_rate": 2.616066131117562e-07, "epoch": 1.982905982905983, "percentage": 66.21, "elapsed_time": "7:29:20", "remaining_time": "3:49:19"}
{"current_steps": 585, "total_steps": 876, "loss": 0.1861, "accuracy": 0.925000011920929, "learning_rate": 2.536742114005448e-07, "epoch": 2.0, "percentage": 66.78, "elapsed_time": "7:32:02", "remaining_time": "3:44:51"}
{"current_steps": 590, "total_steps": 876, "loss": 0.0966, "accuracy": 0.9624999761581421, "learning_rate": 2.4582285015814256e-07, "epoch": 2.017094017094017, "percentage": 67.35, "elapsed_time": "7:34:46", "remaining_time": "3:40:26"}
{"current_steps": 595, "total_steps": 876, "loss": 0.1006, "accuracy": 0.9624999761581421, "learning_rate": 2.3805511245958815e-07, "epoch": 2.034188034188034, "percentage": 67.92, "elapsed_time": "7:37:29", "remaining_time": "3:36:03"}
{"current_steps": 600, "total_steps": 876, "loss": 0.0858, "accuracy": 0.949999988079071, "learning_rate": 2.3037355386801683e-07, "epoch": 2.051282051282051, "percentage": 68.49, "elapsed_time": "7:40:13", "remaining_time": "3:31:42"}
{"current_steps": 600, "total_steps": 876, "eval_loss": 0.44152435660362244, "epoch": 2.051282051282051, "percentage": 68.49, "elapsed_time": "7:48:43", "remaining_time": "3:35:36"}
{"current_steps": 605, "total_steps": 876, "loss": 0.0852, "accuracy": 0.9750000238418579, "learning_rate": 2.2278070159388872e-07, "epoch": 2.0683760683760686, "percentage": 69.06, "elapsed_time": "7:51:57", "remaining_time": "3:31:24"}
{"current_steps": 610, "total_steps": 876, "loss": 0.0849, "accuracy": 0.96875, "learning_rate": 2.1527905366354289e-07, "epoch": 2.0854700854700856, "percentage": 69.63, "elapsed_time": "7:54:39", "remaining_time": "3:26:59"}
{"current_steps": 615, "total_steps": 876, "loss": 0.0868, "accuracy": 0.9750000238418579, "learning_rate": 2.0787107809735372e-07, "epoch": 2.1025641025641026, "percentage": 70.21, "elapsed_time": "7:57:23", "remaining_time": "3:22:35"}
{"current_steps": 620, "total_steps": 876, "loss": 0.0942, "accuracy": 0.956250011920929, "learning_rate": 2.0055921209776062e-07, "epoch": 2.1196581196581197, "percentage": 70.78, "elapsed_time": "8:00:06", "remaining_time": "3:18:14"}
{"current_steps": 625, "total_steps": 876, "loss": 0.0898, "accuracy": 0.9750000238418579, "learning_rate": 1.9334586124743446e-07, "epoch": 2.1367521367521367, "percentage": 71.35, "elapsed_time": "8:02:49", "remaining_time": "3:13:53"}
{"current_steps": 630, "total_steps": 876, "loss": 0.0734, "accuracy": 0.981249988079071, "learning_rate": 1.8623339871784866e-07, "epoch": 2.1538461538461537, "percentage": 71.92, "elapsed_time": "8:05:31", "remaining_time": "3:09:35"}
{"current_steps": 635, "total_steps": 876, "loss": 0.0837, "accuracy": 0.9750000238418579, "learning_rate": 1.792241644885118e-07, "epoch": 2.1709401709401708, "percentage": 72.49, "elapsed_time": "8:08:15", "remaining_time": "3:05:18"}
{"current_steps": 640, "total_steps": 876, "loss": 0.0832, "accuracy": 0.9750000238418579, "learning_rate": 1.7232046457712162e-07, "epoch": 2.1880341880341883, "percentage": 73.06, "elapsed_time": "8:10:58", "remaining_time": "3:01:02"}
{"current_steps": 640, "total_steps": 876, "eval_loss": 0.44137728214263916, "epoch": 2.1880341880341883, "percentage": 73.06, "elapsed_time": "8:19:28", "remaining_time": "3:04:10"}
{"current_steps": 645, "total_steps": 876, "loss": 0.0723, "accuracy": 0.96875, "learning_rate": 1.65524570280892e-07, "epoch": 2.2051282051282053, "percentage": 73.63, "elapsed_time": "8:22:42", "remaining_time": "3:00:02"}
{"current_steps": 650, "total_steps": 876, "loss": 0.0845, "accuracy": 0.96875, "learning_rate": 1.5883871742930255e-07, "epoch": 2.2222222222222223, "percentage": 74.2, "elapsed_time": "8:25:25", "remaining_time": "2:55:43"}
{"current_steps": 655, "total_steps": 876, "loss": 0.0851, "accuracy": 0.9937499761581421, "learning_rate": 1.522651056485173e-07, "epoch": 2.2393162393162394, "percentage": 74.77, "elapsed_time": "8:28:07", "remaining_time": "2:51:26"}
{"current_steps": 660, "total_steps": 876, "loss": 0.0739, "accuracy": 0.9750000238418579, "learning_rate": 1.458058976377141e-07, "epoch": 2.2564102564102564, "percentage": 75.34, "elapsed_time": "8:30:51", "remaining_time": "2:47:11"}
{"current_steps": 665, "total_steps": 876, "loss": 0.0756, "accuracy": 0.9624999761581421, "learning_rate": 1.3946321845756276e-07, "epoch": 2.2735042735042734, "percentage": 75.91, "elapsed_time": "8:33:33", "remaining_time": "2:42:56"}
{"current_steps": 670, "total_steps": 876, "loss": 0.0952, "accuracy": 0.96875, "learning_rate": 1.3323915483108662e-07, "epoch": 2.2905982905982905, "percentage": 76.48, "elapsed_time": "8:36:16", "remaining_time": "2:38:44"}
{"current_steps": 675, "total_steps": 876, "loss": 0.0753, "accuracy": 0.981249988079071, "learning_rate": 1.2713575445713615e-07, "epoch": 2.3076923076923075, "percentage": 77.05, "elapsed_time": "8:39:00", "remaining_time": "2:34:33"}
{"current_steps": 680, "total_steps": 876, "loss": 0.0817, "accuracy": 0.96875, "learning_rate": 1.2115502533670252e-07, "epoch": 2.324786324786325, "percentage": 77.63, "elapsed_time": "8:41:44", "remaining_time": "2:30:23"}
{"current_steps": 680, "total_steps": 876, "eval_loss": 0.45208829641342163, "epoch": 2.324786324786325, "percentage": 77.63, "elapsed_time": "8:50:15", "remaining_time": "2:32:50"}
{"current_steps": 685, "total_steps": 876, "loss": 0.0723, "accuracy": 0.9624999761581421, "learning_rate": 1.1529893511229066e-07, "epoch": 2.341880341880342, "percentage": 78.2, "elapsed_time": "8:53:31", "remaining_time": "2:28:45"}
{"current_steps": 690, "total_steps": 876, "loss": 0.0825, "accuracy": 0.981249988079071, "learning_rate": 1.0956941042057105e-07, "epoch": 2.358974358974359, "percentage": 78.77, "elapsed_time": "8:56:14", "remaining_time": "2:24:33"}
{"current_steps": 695, "total_steps": 876, "loss": 0.0735, "accuracy": 0.949999988079071, "learning_rate": 1.0396833625852147e-07, "epoch": 2.376068376068376, "percentage": 79.34, "elapsed_time": "8:58:57", "remaining_time": "2:20:21"}
{"current_steps": 700, "total_steps": 876, "loss": 0.0931, "accuracy": 0.956250011920929, "learning_rate": 9.849755536326865e-08, "epoch": 2.393162393162393, "percentage": 79.91, "elapsed_time": "9:01:42", "remaining_time": "2:16:11"}
{"current_steps": 705, "total_steps": 876, "loss": 0.0747, "accuracy": 0.987500011920929, "learning_rate": 9.31588676058332e-08, "epoch": 2.41025641025641, "percentage": 80.48, "elapsed_time": "9:04:24", "remaining_time": "2:12:02"}
{"current_steps": 710, "total_steps": 876, "loss": 0.0858, "accuracy": 0.9375, "learning_rate": 8.795402939897678e-08, "epoch": 2.427350427350427, "percentage": 81.05, "elapsed_time": "9:07:08", "remaining_time": "2:07:55"}
{"current_steps": 715, "total_steps": 876, "loss": 0.0793, "accuracy": 0.9375, "learning_rate": 8.288475311934839e-08, "epoch": 2.4444444444444446, "percentage": 81.62, "elapsed_time": "9:09:51", "remaining_time": "2:03:48"}
{"current_steps": 720, "total_steps": 876, "loss": 0.0858, "accuracy": 0.96875, "learning_rate": 7.795270654411634e-08, "epoch": 2.4615384615384617, "percentage": 82.19, "elapsed_time": "9:12:34", "remaining_time": "1:59:43"}
{"current_steps": 720, "total_steps": 876, "eval_loss": 0.4478990435600281, "epoch": 2.4615384615384617, "percentage": 82.19, "elapsed_time": "9:21:04", "remaining_time": "2:01:34"}
{"current_steps": 725, "total_steps": 876, "loss": 0.0794, "accuracy": 0.987500011920929, "learning_rate": 7.315951230227501e-08, "epoch": 2.4786324786324787, "percentage": 82.76, "elapsed_time": "9:24:19", "remaining_time": "1:57:32"}
{"current_steps": 730, "total_steps": 876, "loss": 0.0897, "accuracy": 0.956250011920929, "learning_rate": 6.850674734080453e-08, "epoch": 2.4957264957264957, "percentage": 83.33, "elapsed_time": "9:27:02", "remaining_time": "1:53:24"}
{"current_steps": 735, "total_steps": 876, "loss": 0.075, "accuracy": 0.956250011920929, "learning_rate": 6.399594240585965e-08, "epoch": 2.5128205128205128, "percentage": 83.9, "elapsed_time": "9:29:45", "remaining_time": "1:49:18"}
{"current_steps": 740, "total_steps": 876, "loss": 0.0794, "accuracy": 0.96875, "learning_rate": 5.962858153915896e-08, "epoch": 2.52991452991453, "percentage": 84.47, "elapsed_time": "9:32:28", "remaining_time": "1:45:12"}
{"current_steps": 745, "total_steps": 876, "loss": 0.0799, "accuracy": 0.9624999761581421, "learning_rate": 5.540610158973935e-08, "epoch": 2.547008547008547, "percentage": 85.05, "elapsed_time": "9:35:11", "remaining_time": "1:41:08"}
{"current_steps": 750, "total_steps": 876, "loss": 0.0746, "accuracy": 0.956250011920929, "learning_rate": 5.1329891741236585e-08, "epoch": 2.564102564102564, "percentage": 85.62, "elapsed_time": "9:37:54", "remaining_time": "1:37:05"}
{"current_steps": 755, "total_steps": 876, "loss": 0.0825, "accuracy": 0.9624999761581421, "learning_rate": 4.740129305484869e-08, "epoch": 2.5811965811965814, "percentage": 86.19, "elapsed_time": "9:40:37", "remaining_time": "1:33:03"}
{"current_steps": 760, "total_steps": 876, "loss": 0.0723, "accuracy": 0.9750000238418579, "learning_rate": 4.36215980281297e-08, "epoch": 2.5982905982905984, "percentage": 86.76, "elapsed_time": "9:43:19", "remaining_time": "1:29:02"}
{"current_steps": 760, "total_steps": 876, "eval_loss": 0.4573881924152374, "epoch": 2.5982905982905984, "percentage": 86.76, "elapsed_time": "9:51:50", "remaining_time": "1:30:19"}
{"current_steps": 765, "total_steps": 876, "loss": 0.0854, "accuracy": 0.9750000238418579, "learning_rate": 3.9992050169762483e-08, "epoch": 2.6153846153846154, "percentage": 87.33, "elapsed_time": "9:55:05", "remaining_time": "1:26:20"}
{"current_steps": 770, "total_steps": 876, "loss": 0.0839, "accuracy": 0.9750000238418579, "learning_rate": 3.651384359044773e-08, "epoch": 2.6324786324786325, "percentage": 87.9, "elapsed_time": "9:57:48", "remaining_time": "1:22:17"}
{"current_steps": 775, "total_steps": 876, "loss": 0.0792, "accuracy": 0.9750000238418579, "learning_rate": 3.318812261004467e-08, "epoch": 2.6495726495726495, "percentage": 88.47, "elapsed_time": "10:00:32", "remaining_time": "1:18:15"}
{"current_steps": 780, "total_steps": 876, "loss": 0.0885, "accuracy": 0.96875, "learning_rate": 3.001598138109407e-08, "epoch": 2.6666666666666665, "percentage": 89.04, "elapsed_time": "10:03:15", "remaining_time": "1:14:14"}
{"current_steps": 785, "total_steps": 876, "loss": 0.074, "accuracy": 0.9750000238418579, "learning_rate": 2.6998463528844217e-08, "epoch": 2.683760683760684, "percentage": 89.61, "elapsed_time": "10:05:58", "remaining_time": "1:10:14"}
{"current_steps": 790, "total_steps": 876, "loss": 0.0762, "accuracy": 0.987500011920929, "learning_rate": 2.4136561807901913e-08, "epoch": 2.700854700854701, "percentage": 90.18, "elapsed_time": "10:08:40", "remaining_time": "1:06:15"}
{"current_steps": 795, "total_steps": 876, "loss": 0.0724, "accuracy": 0.96875, "learning_rate": 2.143121777561868e-08, "epoch": 2.717948717948718, "percentage": 90.75, "elapsed_time": "10:11:23", "remaining_time": "1:02:17"}
{"current_steps": 800, "total_steps": 876, "loss": 0.0717, "accuracy": 0.9750000238418579, "learning_rate": 1.8883321482321578e-08, "epoch": 2.735042735042735, "percentage": 91.32, "elapsed_time": "10:14:05", "remaining_time": "0:58:20"}
{"current_steps": 800, "total_steps": 876, "eval_loss": 0.4532097578048706, "epoch": 2.735042735042735, "percentage": 91.32, "elapsed_time": "10:22:36", "remaining_time": "0:59:08"}
{"current_steps": 805, "total_steps": 876, "loss": 0.08, "accuracy": 0.9624999761581421, "learning_rate": 1.6493711178488744e-08, "epoch": 2.752136752136752, "percentage": 91.89, "elapsed_time": "10:25:51", "remaining_time": "0:55:12"}
{"current_steps": 810, "total_steps": 876, "loss": 0.0881, "accuracy": 0.96875, "learning_rate": 1.4263173038967624e-08, "epoch": 2.769230769230769, "percentage": 92.47, "elapsed_time": "10:28:34", "remaining_time": "0:51:13"}
{"current_steps": 815, "total_steps": 876, "loss": 0.076, "accuracy": 0.981249988079071, "learning_rate": 1.2192440904325863e-08, "epoch": 2.786324786324786, "percentage": 93.04, "elapsed_time": "10:31:18", "remaining_time": "0:47:15"}
{"current_steps": 820, "total_steps": 876, "loss": 0.0871, "accuracy": 0.96875, "learning_rate": 1.0282196039419822e-08, "epoch": 2.8034188034188032, "percentage": 93.61, "elapsed_time": "10:34:00", "remaining_time": "0:43:17"}
{"current_steps": 825, "total_steps": 876, "loss": 0.084, "accuracy": 0.9937499761581421, "learning_rate": 8.5330669092602e-09, "epoch": 2.8205128205128203, "percentage": 94.18, "elapsed_time": "10:36:43", "remaining_time": "0:39:21"}
{"current_steps": 830, "total_steps": 876, "loss": 0.0866, "accuracy": 0.949999988079071, "learning_rate": 6.945628972249207e-09, "epoch": 2.8376068376068377, "percentage": 94.75, "elapsed_time": "10:39:26", "remaining_time": "0:35:26"}
{"current_steps": 835, "total_steps": 876, "loss": 0.0789, "accuracy": 0.987500011920929, "learning_rate": 5.520404490856223e-09, "epoch": 2.8547008547008548, "percentage": 95.32, "elapsed_time": "10:42:10", "remaining_time": "0:31:31"}
{"current_steps": 840, "total_steps": 876, "loss": 0.0691, "accuracy": 0.987500011920929, "learning_rate": 4.257862359794917e-09, "epoch": 2.871794871794872, "percentage": 95.89, "elapsed_time": "10:44:54", "remaining_time": "0:27:38"}
{"current_steps": 840, "total_steps": 876, "eval_loss": 0.45144182443618774, "epoch": 2.871794871794872, "percentage": 95.89, "elapsed_time": "10:53:25", "remaining_time": "0:28:00"}
{"current_steps": 845, "total_steps": 876, "loss": 0.0761, "accuracy": 0.949999988079071, "learning_rate": 3.158417951758474e-09, "epoch": 2.888888888888889, "percentage": 96.46, "elapsed_time": "10:56:40", "remaining_time": "0:24:05"}
{"current_steps": 850, "total_steps": 876, "loss": 0.0746, "accuracy": 0.981249988079071, "learning_rate": 2.2224329807629118e-09, "epoch": 2.905982905982906, "percentage": 97.03, "elapsed_time": "10:59:24", "remaining_time": "0:20:10"}
{"current_steps": 855, "total_steps": 876, "loss": 0.079, "accuracy": 0.96875, "learning_rate": 1.450215383144382e-09, "epoch": 2.9230769230769234, "percentage": 97.6, "elapsed_time": "11:02:06", "remaining_time": "0:16:15"}
{"current_steps": 860, "total_steps": 876, "loss": 0.0725, "accuracy": 0.9624999761581421, "learning_rate": 8.420192162490458e-10, "epoch": 2.9401709401709404, "percentage": 98.17, "elapsed_time": "11:04:49", "remaining_time": "0:12:22"}
{"current_steps": 865, "total_steps": 876, "loss": 0.085, "accuracy": 0.987500011920929, "learning_rate": 3.98044574848877e-10, "epoch": 2.9572649572649574, "percentage": 98.74, "elapsed_time": "11:07:32", "remaining_time": "0:08:29"}
{"current_steps": 870, "total_steps": 876, "loss": 0.0743, "accuracy": 0.981249988079071, "learning_rate": 1.1843752531104368e-10, "epoch": 2.9743589743589745, "percentage": 99.32, "elapsed_time": "11:10:15", "remaining_time": "0:04:37"}
{"current_steps": 875, "total_steps": 876, "loss": 0.0748, "accuracy": 0.949999988079071, "learning_rate": 3.290057542459923e-12, "epoch": 2.9914529914529915, "percentage": 99.89, "elapsed_time": "11:12:58", "remaining_time": "0:00:46"}
{"current_steps": 876, "total_steps": 876, "epoch": 2.994871794871795, "percentage": 100.0, "elapsed_time": "11:14:05", "remaining_time": "0:00:00"}