File size: 18,905 Bytes
5a4361d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
{"current_steps": 5, "total_steps": 429, "loss": 1.6404, "learning_rate": 5e-07, "epoch": 0.034782608695652174, "percentage": 1.17, "elapsed_time": "0:01:07", "remaining_time": "1:35:10"}
{"current_steps": 10, "total_steps": 429, "loss": 1.5079, "learning_rate": 1e-06, "epoch": 0.06956521739130435, "percentage": 2.33, "elapsed_time": "0:02:09", "remaining_time": "1:30:28"}
{"current_steps": 15, "total_steps": 429, "loss": 1.2858, "learning_rate": 9.99648681635985e-07, "epoch": 0.10434782608695652, "percentage": 3.5, "elapsed_time": "0:03:12", "remaining_time": "1:28:37"}
{"current_steps": 20, "total_steps": 429, "loss": 1.2292, "learning_rate": 9.985952202423114e-07, "epoch": 0.1391304347826087, "percentage": 4.66, "elapsed_time": "0:04:15", "remaining_time": "1:27:09"}
{"current_steps": 25, "total_steps": 429, "loss": 1.2035, "learning_rate": 9.96841096220313e-07, "epoch": 0.17391304347826086, "percentage": 5.83, "elapsed_time": "0:05:18", "remaining_time": "1:25:39"}
{"current_steps": 30, "total_steps": 429, "loss": 1.1615, "learning_rate": 9.943887745939163e-07, "epoch": 0.20869565217391303, "percentage": 6.99, "elapsed_time": "0:06:20", "remaining_time": "1:24:17"}
{"current_steps": 35, "total_steps": 429, "loss": 1.1627, "learning_rate": 9.912417015456088e-07, "epoch": 0.24347826086956523, "percentage": 8.16, "elapsed_time": "0:07:23", "remaining_time": "1:23:11"}
{"current_steps": 40, "total_steps": 429, "loss": 1.1468, "learning_rate": 9.874042995736093e-07, "epoch": 0.2782608695652174, "percentage": 9.32, "elapsed_time": "0:08:25", "remaining_time": "1:21:59"}
{"current_steps": 45, "total_steps": 429, "loss": 1.1457, "learning_rate": 9.828819612770495e-07, "epoch": 0.3130434782608696, "percentage": 10.49, "elapsed_time": "0:09:27", "remaining_time": "1:20:46"}
{"current_steps": 50, "total_steps": 429, "loss": 1.1363, "learning_rate": 9.77681041777897e-07, "epoch": 0.34782608695652173, "percentage": 11.66, "elapsed_time": "0:10:30", "remaining_time": "1:19:40"}
{"current_steps": 50, "total_steps": 429, "eval_loss": 1.1214656829833984, "epoch": 0.34782608695652173, "percentage": 11.66, "elapsed_time": "0:11:41", "remaining_time": "1:28:39"}
{"current_steps": 55, "total_steps": 429, "loss": 1.1252, "learning_rate": 9.718088497902707e-07, "epoch": 0.3826086956521739, "percentage": 12.82, "elapsed_time": "0:12:44", "remaining_time": "1:26:35"}
{"current_steps": 60, "total_steps": 429, "loss": 1.1144, "learning_rate": 9.652736373497e-07, "epoch": 0.41739130434782606, "percentage": 13.99, "elapsed_time": "0:13:46", "remaining_time": "1:24:41"}
{"current_steps": 65, "total_steps": 429, "loss": 1.1048, "learning_rate": 9.580845882167572e-07, "epoch": 0.45217391304347826, "percentage": 15.15, "elapsed_time": "0:14:48", "remaining_time": "1:22:54"}
{"current_steps": 70, "total_steps": 429, "loss": 1.0967, "learning_rate": 9.502518049713631e-07, "epoch": 0.48695652173913045, "percentage": 16.32, "elapsed_time": "0:15:50", "remaining_time": "1:21:13"}
{"current_steps": 75, "total_steps": 429, "loss": 1.0922, "learning_rate": 9.417862948158997e-07, "epoch": 0.5217391304347826, "percentage": 17.48, "elapsed_time": "0:16:52", "remaining_time": "1:19:39"}
{"current_steps": 80, "total_steps": 429, "loss": 1.1065, "learning_rate": 9.326999541070803e-07, "epoch": 0.5565217391304348, "percentage": 18.65, "elapsed_time": "0:17:55", "remaining_time": "1:18:10"}
{"current_steps": 85, "total_steps": 429, "loss": 1.08, "learning_rate": 9.23005551638316e-07, "epoch": 0.591304347826087, "percentage": 19.81, "elapsed_time": "0:18:57", "remaining_time": "1:16:44"}
{"current_steps": 90, "total_steps": 429, "loss": 1.0871, "learning_rate": 9.127167106960681e-07, "epoch": 0.6260869565217392, "percentage": 20.98, "elapsed_time": "0:20:00", "remaining_time": "1:15:20"}
{"current_steps": 95, "total_steps": 429, "loss": 1.0791, "learning_rate": 9.018478899154066e-07, "epoch": 0.6608695652173913, "percentage": 22.14, "elapsed_time": "0:21:02", "remaining_time": "1:13:59"}
{"current_steps": 100, "total_steps": 429, "loss": 1.0856, "learning_rate": 8.904143629616732e-07, "epoch": 0.6956521739130435, "percentage": 23.31, "elapsed_time": "0:22:05", "remaining_time": "1:12:40"}
{"current_steps": 100, "total_steps": 429, "eval_loss": 1.074812412261963, "epoch": 0.6956521739130435, "percentage": 23.31, "elapsed_time": "0:23:16", "remaining_time": "1:16:33"}
{"current_steps": 105, "total_steps": 429, "loss": 1.0638, "learning_rate": 8.784321970668053e-07, "epoch": 0.7304347826086957, "percentage": 24.48, "elapsed_time": "0:24:50", "remaining_time": "1:16:40"}
{"current_steps": 110, "total_steps": 429, "loss": 1.0768, "learning_rate": 8.659182304504808e-07, "epoch": 0.7652173913043478, "percentage": 25.64, "elapsed_time": "0:25:53", "remaining_time": "1:15:04"}
{"current_steps": 115, "total_steps": 429, "loss": 1.0838, "learning_rate": 8.528900486578158e-07, "epoch": 0.8, "percentage": 26.81, "elapsed_time": "0:26:55", "remaining_time": "1:13:29"}
{"current_steps": 120, "total_steps": 429, "loss": 1.0633, "learning_rate": 8.393659598468642e-07, "epoch": 0.8347826086956521, "percentage": 27.97, "elapsed_time": "0:27:57", "remaining_time": "1:11:58"}
{"current_steps": 125, "total_steps": 429, "loss": 1.0748, "learning_rate": 8.253649690606494e-07, "epoch": 0.8695652173913043, "percentage": 29.14, "elapsed_time": "0:28:59", "remaining_time": "1:10:30"}
{"current_steps": 130, "total_steps": 429, "loss": 1.0623, "learning_rate": 8.10906751519882e-07, "epoch": 0.9043478260869565, "percentage": 30.3, "elapsed_time": "0:30:02", "remaining_time": "1:09:04"}
{"current_steps": 135, "total_steps": 429, "loss": 1.0396, "learning_rate": 7.960116249738937e-07, "epoch": 0.9391304347826087, "percentage": 31.47, "elapsed_time": "0:31:05", "remaining_time": "1:07:41"}
{"current_steps": 140, "total_steps": 429, "loss": 1.0662, "learning_rate": 7.807005211486444e-07, "epoch": 0.9739130434782609, "percentage": 32.63, "elapsed_time": "0:32:07", "remaining_time": "1:06:18"}
{"current_steps": 145, "total_steps": 429, "loss": 1.0155, "learning_rate": 7.649949563319227e-07, "epoch": 1.008695652173913, "percentage": 33.8, "elapsed_time": "0:33:10", "remaining_time": "1:04:58"}
{"current_steps": 150, "total_steps": 429, "loss": 0.9426, "learning_rate": 7.489170011370779e-07, "epoch": 1.0434782608695652, "percentage": 34.97, "elapsed_time": "0:34:12", "remaining_time": "1:03:37"}
{"current_steps": 150, "total_steps": 429, "eval_loss": 1.0552960634231567, "epoch": 1.0434782608695652, "percentage": 34.97, "elapsed_time": "0:35:23", "remaining_time": "1:05:48"}
{"current_steps": 155, "total_steps": 429, "loss": 0.9222, "learning_rate": 7.324892494877733e-07, "epoch": 1.0782608695652174, "percentage": 36.13, "elapsed_time": "0:36:25", "remaining_time": "1:04:22"}
{"current_steps": 160, "total_steps": 429, "loss": 0.9223, "learning_rate": 7.15734786867344e-07, "epoch": 1.1130434782608696, "percentage": 37.3, "elapsed_time": "0:37:28", "remaining_time": "1:03:00"}
{"current_steps": 165, "total_steps": 429, "loss": 0.937, "learning_rate": 6.986771578773811e-07, "epoch": 1.1478260869565218, "percentage": 38.46, "elapsed_time": "0:38:31", "remaining_time": "1:01:37"}
{"current_steps": 170, "total_steps": 429, "loss": 0.9173, "learning_rate": 6.81340333151128e-07, "epoch": 1.182608695652174, "percentage": 39.63, "elapsed_time": "0:39:33", "remaining_time": "1:00:16"}
{"current_steps": 175, "total_steps": 429, "loss": 0.9232, "learning_rate": 6.637486756681842e-07, "epoch": 1.2173913043478262, "percentage": 40.79, "elapsed_time": "0:40:36", "remaining_time": "0:58:56"}
{"current_steps": 180, "total_steps": 429, "loss": 0.9146, "learning_rate": 6.459269065178591e-07, "epoch": 1.2521739130434781, "percentage": 41.96, "elapsed_time": "0:41:39", "remaining_time": "0:57:37"}
{"current_steps": 185, "total_steps": 429, "loss": 0.919, "learning_rate": 6.279000701592794e-07, "epoch": 1.2869565217391306, "percentage": 43.12, "elapsed_time": "0:42:41", "remaining_time": "0:56:18"}
{"current_steps": 190, "total_steps": 429, "loss": 0.9201, "learning_rate": 6.096934992270767e-07, "epoch": 1.3217391304347825, "percentage": 44.29, "elapsed_time": "0:43:44", "remaining_time": "0:55:00"}
{"current_steps": 195, "total_steps": 429, "loss": 0.9151, "learning_rate": 5.913327789321077e-07, "epoch": 1.3565217391304347, "percentage": 45.45, "elapsed_time": "0:44:46", "remaining_time": "0:53:43"}
{"current_steps": 200, "total_steps": 429, "loss": 0.9144, "learning_rate": 5.728437111072375e-07, "epoch": 1.391304347826087, "percentage": 46.62, "elapsed_time": "0:45:48", "remaining_time": "0:52:26"}
{"current_steps": 200, "total_steps": 429, "eval_loss": 1.043231725692749, "epoch": 1.391304347826087, "percentage": 46.62, "elapsed_time": "0:46:59", "remaining_time": "0:53:47"}
{"current_steps": 205, "total_steps": 429, "loss": 0.9173, "learning_rate": 5.542522779487071e-07, "epoch": 1.4260869565217391, "percentage": 47.79, "elapsed_time": "0:48:33", "remaining_time": "0:53:03"}
{"current_steps": 210, "total_steps": 429, "loss": 0.9102, "learning_rate": 5.355846055040448e-07, "epoch": 1.4608695652173913, "percentage": 48.95, "elapsed_time": "0:49:36", "remaining_time": "0:51:43"}
{"current_steps": 215, "total_steps": 429, "loss": 0.9199, "learning_rate": 5.168669269578232e-07, "epoch": 1.4956521739130435, "percentage": 50.12, "elapsed_time": "0:50:38", "remaining_time": "0:50:24"}
{"current_steps": 220, "total_steps": 429, "loss": 0.9233, "learning_rate": 4.981255457668624e-07, "epoch": 1.5304347826086957, "percentage": 51.28, "elapsed_time": "0:51:40", "remaining_time": "0:49:05"}
{"current_steps": 225, "total_steps": 429, "loss": 0.9091, "learning_rate": 4.793867986966802e-07, "epoch": 1.5652173913043477, "percentage": 52.45, "elapsed_time": "0:52:42", "remaining_time": "0:47:47"}
{"current_steps": 230, "total_steps": 429, "loss": 0.8952, "learning_rate": 4.606770188111338e-07, "epoch": 1.6, "percentage": 53.61, "elapsed_time": "0:53:44", "remaining_time": "0:46:30"}
{"current_steps": 235, "total_steps": 429, "loss": 0.9053, "learning_rate": 4.420224984672653e-07, "epoch": 1.634782608695652, "percentage": 54.78, "elapsed_time": "0:54:47", "remaining_time": "0:45:13"}
{"current_steps": 240, "total_steps": 429, "loss": 0.9109, "learning_rate": 4.2344945236734963e-07, "epoch": 1.6695652173913045, "percentage": 55.94, "elapsed_time": "0:55:49", "remaining_time": "0:43:57"}
{"current_steps": 245, "total_steps": 429, "loss": 0.9037, "learning_rate": 4.049839807200688e-07, "epoch": 1.7043478260869565, "percentage": 57.11, "elapsed_time": "0:56:51", "remaining_time": "0:42:42"}
{"current_steps": 250, "total_steps": 429, "loss": 0.9069, "learning_rate": 3.866520325625825e-07, "epoch": 1.7391304347826086, "percentage": 58.28, "elapsed_time": "0:57:54", "remaining_time": "0:41:27"}
{"current_steps": 250, "total_steps": 429, "eval_loss": 1.029205083847046, "epoch": 1.7391304347826086, "percentage": 58.28, "elapsed_time": "0:59:04", "remaining_time": "0:42:18"}
{"current_steps": 255, "total_steps": 429, "loss": 0.879, "learning_rate": 3.684793692950344e-07, "epoch": 1.7739130434782608, "percentage": 59.44, "elapsed_time": "1:00:07", "remaining_time": "0:41:01"}
{"current_steps": 260, "total_steps": 429, "loss": 0.8932, "learning_rate": 3.504915284787405e-07, "epoch": 1.808695652173913, "percentage": 60.61, "elapsed_time": "1:01:09", "remaining_time": "0:39:45"}
{"current_steps": 265, "total_steps": 429, "loss": 0.894, "learning_rate": 3.327137879489312e-07, "epoch": 1.8434782608695652, "percentage": 61.77, "elapsed_time": "1:02:11", "remaining_time": "0:38:29"}
{"current_steps": 270, "total_steps": 429, "loss": 0.9063, "learning_rate": 3.1517113029248233e-07, "epoch": 1.8782608695652174, "percentage": 62.94, "elapsed_time": "1:03:13", "remaining_time": "0:37:13"}
{"current_steps": 275, "total_steps": 429, "loss": 0.8991, "learning_rate": 2.9788820774054697e-07, "epoch": 1.9130434782608696, "percentage": 64.1, "elapsed_time": "1:04:15", "remaining_time": "0:35:59"}
{"current_steps": 280, "total_steps": 429, "loss": 0.8986, "learning_rate": 2.8088930752543063e-07, "epoch": 1.9478260869565216, "percentage": 65.27, "elapsed_time": "1:05:18", "remaining_time": "0:34:45"}
{"current_steps": 285, "total_steps": 429, "loss": 0.8953, "learning_rate": 2.641983177503876e-07, "epoch": 1.982608695652174, "percentage": 66.43, "elapsed_time": "1:06:20", "remaining_time": "0:33:31"}
{"current_steps": 290, "total_steps": 429, "loss": 0.8563, "learning_rate": 2.4783869382030424e-07, "epoch": 2.017391304347826, "percentage": 67.6, "elapsed_time": "1:07:22", "remaining_time": "0:32:17"}
{"current_steps": 295, "total_steps": 429, "loss": 0.7987, "learning_rate": 2.3183342548044065e-07, "epoch": 2.0521739130434784, "percentage": 68.76, "elapsed_time": "1:08:25", "remaining_time": "0:31:05"}
{"current_steps": 300, "total_steps": 429, "loss": 0.8152, "learning_rate": 2.1620500450955221e-07, "epoch": 2.0869565217391304, "percentage": 69.93, "elapsed_time": "1:09:28", "remaining_time": "0:29:52"}
{"current_steps": 300, "total_steps": 429, "eval_loss": 1.039559245109558, "epoch": 2.0869565217391304, "percentage": 69.93, "elapsed_time": "1:10:38", "remaining_time": "0:30:22"}
{"current_steps": 305, "total_steps": 429, "loss": 0.8055, "learning_rate": 2.0097539311278898e-07, "epoch": 2.121739130434783, "percentage": 71.1, "elapsed_time": "1:12:12", "remaining_time": "0:29:21"}
{"current_steps": 310, "total_steps": 429, "loss": 0.8184, "learning_rate": 1.8616599305879333e-07, "epoch": 2.1565217391304348, "percentage": 72.26, "elapsed_time": "1:13:14", "remaining_time": "0:28:07"}
{"current_steps": 315, "total_steps": 429, "loss": 0.8201, "learning_rate": 1.7179761560436097e-07, "epoch": 2.1913043478260867, "percentage": 73.43, "elapsed_time": "1:14:17", "remaining_time": "0:26:53"}
{"current_steps": 320, "total_steps": 429, "loss": 0.8166, "learning_rate": 1.5789045224893538e-07, "epoch": 2.226086956521739, "percentage": 74.59, "elapsed_time": "1:15:19", "remaining_time": "0:25:39"}
{"current_steps": 325, "total_steps": 429, "loss": 0.8265, "learning_rate": 1.444640463600293e-07, "epoch": 2.260869565217391, "percentage": 75.76, "elapsed_time": "1:16:22", "remaining_time": "0:24:26"}
{"current_steps": 330, "total_steps": 429, "loss": 0.8008, "learning_rate": 1.3153726570944828e-07, "epoch": 2.2956521739130435, "percentage": 76.92, "elapsed_time": "1:17:24", "remaining_time": "0:23:13"}
{"current_steps": 335, "total_steps": 429, "loss": 0.8131, "learning_rate": 1.1912827595891312e-07, "epoch": 2.3304347826086955, "percentage": 78.09, "elapsed_time": "1:18:27", "remaining_time": "0:22:00"}
{"current_steps": 340, "total_steps": 429, "loss": 0.8219, "learning_rate": 1.0725451513233674e-07, "epoch": 2.365217391304348, "percentage": 79.25, "elapsed_time": "1:19:29", "remaining_time": "0:20:48"}
{"current_steps": 345, "total_steps": 429, "loss": 0.8005, "learning_rate": 9.593266911063253e-08, "epoch": 2.4, "percentage": 80.42, "elapsed_time": "1:20:31", "remaining_time": "0:19:36"}
{"current_steps": 350, "total_steps": 429, "loss": 0.8141, "learning_rate": 8.517864818348803e-08, "epoch": 2.4347826086956523, "percentage": 81.59, "elapsed_time": "1:21:33", "remaining_time": "0:18:24"}
{"current_steps": 350, "total_steps": 429, "eval_loss": 1.0375770330429077, "epoch": 2.4347826086956523, "percentage": 81.59, "elapsed_time": "1:22:44", "remaining_time": "0:18:40"}
{"current_steps": 355, "total_steps": 429, "loss": 0.8119, "learning_rate": 7.500756469105818e-08, "epoch": 2.4695652173913043, "percentage": 82.75, "elapsed_time": "1:23:46", "remaining_time": "0:17:27"}
{"current_steps": 360, "total_steps": 429, "loss": 0.7997, "learning_rate": 6.543371178699442e-08, "epoch": 2.5043478260869563, "percentage": 83.92, "elapsed_time": "1:24:49", "remaining_time": "0:16:15"}
{"current_steps": 365, "total_steps": 429, "loss": 0.8019, "learning_rate": 5.647054335265489e-08, "epoch": 2.5391304347826087, "percentage": 85.08, "elapsed_time": "1:25:51", "remaining_time": "0:15:03"}
{"current_steps": 370, "total_steps": 429, "loss": 0.7917, "learning_rate": 4.813065509072278e-08, "epoch": 2.573913043478261, "percentage": 86.25, "elapsed_time": "1:26:53", "remaining_time": "0:13:51"}
{"current_steps": 375, "total_steps": 429, "loss": 0.8107, "learning_rate": 4.0425766824798814e-08, "epoch": 2.608695652173913, "percentage": 87.41, "elapsed_time": "1:27:56", "remaining_time": "0:12:39"}
{"current_steps": 380, "total_steps": 429, "loss": 0.8191, "learning_rate": 3.3366706029845096e-08, "epoch": 2.643478260869565, "percentage": 88.58, "elapsed_time": "1:28:58", "remaining_time": "0:11:28"}
{"current_steps": 385, "total_steps": 429, "loss": 0.8074, "learning_rate": 2.696339261662156e-08, "epoch": 2.6782608695652175, "percentage": 89.74, "elapsed_time": "1:30:01", "remaining_time": "0:10:17"}
{"current_steps": 390, "total_steps": 429, "loss": 0.802, "learning_rate": 2.122482499149869e-08, "epoch": 2.7130434782608694, "percentage": 90.91, "elapsed_time": "1:31:03", "remaining_time": "0:09:06"}
{"current_steps": 395, "total_steps": 429, "loss": 0.7993, "learning_rate": 1.6159067411235737e-08, "epoch": 2.747826086956522, "percentage": 92.07, "elapsed_time": "1:32:05", "remaining_time": "0:07:55"}
{"current_steps": 400, "total_steps": 429, "loss": 0.8097, "learning_rate": 1.177323865049512e-08, "epoch": 2.782608695652174, "percentage": 93.24, "elapsed_time": "1:33:07", "remaining_time": "0:06:45"}
{"current_steps": 400, "total_steps": 429, "eval_loss": 1.0366120338439941, "epoch": 2.782608695652174, "percentage": 93.24, "elapsed_time": "1:34:18", "remaining_time": "0:06:50"}
{"current_steps": 405, "total_steps": 429, "loss": 0.7976, "learning_rate": 8.073501998017152e-09, "epoch": 2.8173913043478263, "percentage": 94.41, "elapsed_time": "1:35:52", "remaining_time": "0:05:40"}
{"current_steps": 410, "total_steps": 429, "loss": 0.8042, "learning_rate": 5.065056595513984e-09, "epoch": 2.8521739130434782, "percentage": 95.57, "elapsed_time": "1:36:55", "remaining_time": "0:04:29"}
{"current_steps": 415, "total_steps": 429, "loss": 0.797, "learning_rate": 2.752130131453756e-09, "epoch": 2.8869565217391306, "percentage": 96.74, "elapsed_time": "1:37:57", "remaining_time": "0:03:18"}
{"current_steps": 420, "total_steps": 429, "loss": 0.8181, "learning_rate": 1.137972900002171e-09, "epoch": 2.9217391304347826, "percentage": 97.9, "elapsed_time": "1:38:59", "remaining_time": "0:02:07"}
{"current_steps": 425, "total_steps": 429, "loss": 0.8073, "learning_rate": 2.2485323347054552e-10, "epoch": 2.9565217391304346, "percentage": 99.07, "elapsed_time": "1:40:02", "remaining_time": "0:00:56"}
{"current_steps": 429, "total_steps": 429, "epoch": 2.9843478260869567, "percentage": 100.0, "elapsed_time": "1:41:23", "remaining_time": "0:00:00"}
|