File size: 3,419 Bytes
8ce541d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: AA_preference_cocour_new_step10_0_100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AA_preference_cocour_new_step10_0_100

This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cocour_new_step10_0_100 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4957
- Rewards/chosen: -0.4320
- Rewards/rejected: -3.0552
- Rewards/accuracies: 0.7917
- Rewards/margins: 2.6232
- Logps/rejected: -248.9210
- Logps/chosen: -252.8571
- Logits/rejected: -2.2740
- Logits/chosen: -2.3049

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.577         | 0.3738 | 50   | 0.5782          | 0.7960         | -0.1800          | 0.7250             | 0.9759          | -220.1687      | -240.5771    | -2.1546         | -2.1689       |
| 0.5388        | 0.7477 | 100  | 0.5391          | -0.4398        | -2.0133          | 0.7479             | 1.5735          | -238.5014      | -252.9343    | -2.1740         | -2.1991       |
| 0.2653        | 1.1215 | 150  | 0.5247          | 0.2862         | -1.6846          | 0.7646             | 1.9708          | -235.2147      | -245.6745    | -2.3266         | -2.3485       |
| 0.2571        | 1.4953 | 200  | 0.5108          | -0.5979        | -3.0808          | 0.7792             | 2.4828          | -249.1766      | -254.5160    | -2.4752         | -2.5016       |
| 0.2803        | 1.8692 | 250  | 0.4817          | -0.2909        | -2.6866          | 0.7854             | 2.3957          | -245.2348      | -251.4460    | -2.3853         | -2.4107       |
| 0.1739        | 2.2430 | 300  | 0.4912          | -0.3815        | -2.8477          | 0.7917             | 2.4662          | -246.8459      | -252.3520    | -2.3281         | -2.3560       |
| 0.1631        | 2.6168 | 350  | 0.4965          | -0.4101        | -3.0083          | 0.7896             | 2.5982          | -248.4518      | -252.6378    | -2.2784         | -2.3092       |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3