File size: 2,836 Bytes
5a0ce29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: AA_preference_cocour_new_step10_0_60
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AA_preference_cocour_new_step10_0_60

This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_cocour_new_step10_0_60 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5132
- Rewards/chosen: 1.2483
- Rewards/rejected: -1.4384
- Rewards/accuracies: 0.8090
- Rewards/margins: 2.6868
- Logps/rejected: -217.5475
- Logps/chosen: -242.1045
- Logits/rejected: -2.5237
- Logits/chosen: -2.5348

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5367        | 0.6231 | 50   | 0.5755          | 1.1959         | -0.1615          | 0.7604             | 1.3575          | -204.7787      | -242.6288    | -2.3101         | -2.3204       |
| 0.2278        | 1.2461 | 100  | 0.5325          | 1.6096         | -0.6681          | 0.7986             | 2.2777          | -209.8443      | -238.4921    | -2.6060         | -2.6072       |
| 0.2926        | 1.8692 | 150  | 0.5151          | 1.0491         | -1.4143          | 0.8194             | 2.4633          | -217.3059      | -244.0971    | -2.4769         | -2.4878       |
| 0.1423        | 2.4922 | 200  | 0.5126          | 1.3148         | -1.3120          | 0.8125             | 2.6268          | -216.2832      | -241.4400    | -2.5411         | -2.5506       |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3