|
{"current_steps": 5, "total_steps": 279, "loss": 0.6907, "accuracy": 0.3499999940395355, "learning_rate": 5e-07, "epoch": 0.053475935828877004, "percentage": 1.79, "elapsed_time": "0:02:54", "remaining_time": "2:39:16"} |
|
{"current_steps": 10, "total_steps": 279, "loss": 0.6381, "accuracy": 0.606249988079071, "learning_rate": 1e-06, "epoch": 0.10695187165775401, "percentage": 3.58, "elapsed_time": "0:05:42", "remaining_time": "2:33:40"} |
|
{"current_steps": 15, "total_steps": 279, "loss": 0.6476, "accuracy": 0.75, "learning_rate": 9.991477798614637e-07, "epoch": 0.16042780748663102, "percentage": 5.38, "elapsed_time": "0:08:30", "remaining_time": "2:29:43"} |
|
{"current_steps": 20, "total_steps": 279, "loss": 0.6411, "accuracy": 0.7875000238418579, "learning_rate": 9.965940245625131e-07, "epoch": 0.21390374331550802, "percentage": 7.17, "elapsed_time": "0:11:18", "remaining_time": "2:26:32"} |
|
{"current_steps": 25, "total_steps": 279, "loss": 0.6356, "accuracy": 0.6937500238418579, "learning_rate": 9.923474395499264e-07, "epoch": 0.26737967914438504, "percentage": 8.96, "elapsed_time": "0:14:07", "remaining_time": "2:23:29"} |
|
{"current_steps": 30, "total_steps": 279, "loss": 0.5918, "accuracy": 0.668749988079071, "learning_rate": 9.86422500924775e-07, "epoch": 0.32085561497326204, "percentage": 10.75, "elapsed_time": "0:16:56", "remaining_time": "2:20:37"} |
|
{"current_steps": 35, "total_steps": 279, "loss": 0.6045, "accuracy": 0.6937500238418579, "learning_rate": 9.788394060951227e-07, "epoch": 0.37433155080213903, "percentage": 12.54, "elapsed_time": "0:19:45", "remaining_time": "2:17:45"} |
|
{"current_steps": 40, "total_steps": 279, "loss": 0.6251, "accuracy": 0.737500011920929, "learning_rate": 9.696240049254742e-07, "epoch": 0.42780748663101603, "percentage": 14.34, "elapsed_time": "0:22:33", "remaining_time": "2:14:49"} |
|
{"current_steps": 45, "total_steps": 279, "loss": 0.6052, "accuracy": 0.731249988079071, "learning_rate": 9.588077116176756e-07, "epoch": 0.48128342245989303, "percentage": 16.13, "elapsed_time": "0:25:22", "remaining_time": "2:11:59"} |
|
{"current_steps": 50, "total_steps": 279, "loss": 0.5778, "accuracy": 0.7124999761581421, "learning_rate": 9.464273976236516e-07, "epoch": 0.5347593582887701, "percentage": 17.92, "elapsed_time": "0:28:12", "remaining_time": "2:09:10"} |
|
{"current_steps": 50, "total_steps": 279, "eval_loss": 0.5711008310317993, "epoch": 0.5347593582887701, "percentage": 17.92, "elapsed_time": "0:31:10", "remaining_time": "2:22:46"} |
|
{"current_steps": 55, "total_steps": 279, "loss": 0.5385, "accuracy": 0.737500011920929, "learning_rate": 9.325252659550308e-07, "epoch": 0.5882352941176471, "percentage": 19.71, "elapsed_time": "0:33:59", "remaining_time": "2:18:26"} |
|
{"current_steps": 60, "total_steps": 279, "loss": 0.5661, "accuracy": 0.7875000238418579, "learning_rate": 9.171487073181197e-07, "epoch": 0.6417112299465241, "percentage": 21.51, "elapsed_time": "0:36:48", "remaining_time": "2:14:21"} |
|
{"current_steps": 65, "total_steps": 279, "loss": 0.5596, "accuracy": 0.8125, "learning_rate": 9.003501385646448e-07, "epoch": 0.6951871657754011, "percentage": 23.3, "elapsed_time": "0:39:38", "remaining_time": "2:10:29"} |
|
{"current_steps": 70, "total_steps": 279, "loss": 0.5263, "accuracy": 0.762499988079071, "learning_rate": 8.821868240089676e-07, "epoch": 0.7486631016042781, "percentage": 25.09, "elapsed_time": "0:42:27", "remaining_time": "2:06:44"} |
|
{"current_steps": 75, "total_steps": 279, "loss": 0.5073, "accuracy": 0.731249988079071, "learning_rate": 8.62720680220876e-07, "epoch": 0.8021390374331551, "percentage": 26.88, "elapsed_time": "0:45:15", "remaining_time": "2:03:05"} |
|
{"current_steps": 80, "total_steps": 279, "loss": 0.5523, "accuracy": 0.7875000238418579, "learning_rate": 8.420180649593929e-07, "epoch": 0.8556149732620321, "percentage": 28.67, "elapsed_time": "0:48:04", "remaining_time": "1:59:34"} |
|
{"current_steps": 85, "total_steps": 279, "loss": 0.5362, "accuracy": 0.762499988079071, "learning_rate": 8.201495509671036e-07, "epoch": 0.9090909090909091, "percentage": 30.47, "elapsed_time": "0:50:51", "remaining_time": "1:56:05"} |
|
{"current_steps": 90, "total_steps": 279, "loss": 0.5064, "accuracy": 0.7437499761581421, "learning_rate": 7.971896853961042e-07, "epoch": 0.9625668449197861, "percentage": 32.26, "elapsed_time": "0:53:41", "remaining_time": "1:52:44"} |
|
{"current_steps": 95, "total_steps": 279, "loss": 0.4555, "accuracy": 0.824999988079071, "learning_rate": 7.732167356856654e-07, "epoch": 1.0160427807486632, "percentage": 34.05, "elapsed_time": "0:56:29", "remaining_time": "1:49:24"} |
|
{"current_steps": 100, "total_steps": 279, "loss": 0.232, "accuracy": 0.90625, "learning_rate": 7.48312422757881e-07, "epoch": 1.0695187165775402, "percentage": 35.84, "elapsed_time": "0:59:18", "remaining_time": "1:46:10"} |
|
{"current_steps": 100, "total_steps": 279, "eval_loss": 0.49347466230392456, "epoch": 1.0695187165775402, "percentage": 35.84, "elapsed_time": "1:02:15", "remaining_time": "1:51:27"} |
|
{"current_steps": 105, "total_steps": 279, "loss": 0.2233, "accuracy": 0.9125000238418579, "learning_rate": 7.225616424408044e-07, "epoch": 1.1229946524064172, "percentage": 37.63, "elapsed_time": "1:05:38", "remaining_time": "1:48:47"} |
|
{"current_steps": 110, "total_steps": 279, "loss": 0.2622, "accuracy": 0.9437500238418579, "learning_rate": 6.96052176068713e-07, "epoch": 1.1764705882352942, "percentage": 39.43, "elapsed_time": "1:08:27", "remaining_time": "1:45:10"} |
|
{"current_steps": 115, "total_steps": 279, "loss": 0.2755, "accuracy": 0.887499988079071, "learning_rate": 6.688743912460229e-07, "epoch": 1.2299465240641712, "percentage": 41.22, "elapsed_time": "1:11:15", "remaining_time": "1:41:36"} |
|
{"current_steps": 120, "total_steps": 279, "loss": 0.2087, "accuracy": 0.925000011920929, "learning_rate": 6.411209337949213e-07, "epoch": 1.2834224598930482, "percentage": 43.01, "elapsed_time": "1:14:03", "remaining_time": "1:38:07"} |
|
{"current_steps": 125, "total_steps": 279, "loss": 0.311, "accuracy": 0.893750011920929, "learning_rate": 6.128864119368233e-07, "epoch": 1.3368983957219251, "percentage": 44.8, "elapsed_time": "1:16:51", "remaining_time": "1:34:41"} |
|
{"current_steps": 130, "total_steps": 279, "loss": 0.2738, "accuracy": 0.925000011920929, "learning_rate": 5.842670737842467e-07, "epoch": 1.3903743315508021, "percentage": 46.59, "elapsed_time": "1:19:40", "remaining_time": "1:31:19"} |
|
{"current_steps": 135, "total_steps": 279, "loss": 0.2369, "accuracy": 0.90625, "learning_rate": 5.553604792424922e-07, "epoch": 1.4438502673796791, "percentage": 48.39, "elapsed_time": "1:22:29", "remaining_time": "1:27:59"} |
|
{"current_steps": 140, "total_steps": 279, "loss": 0.2554, "accuracy": 0.887499988079071, "learning_rate": 5.262651674395798e-07, "epoch": 1.4973262032085561, "percentage": 50.18, "elapsed_time": "1:25:18", "remaining_time": "1:24:41"} |
|
{"current_steps": 145, "total_steps": 279, "loss": 0.2808, "accuracy": 0.8812500238418579, "learning_rate": 4.970803208181314e-07, "epoch": 1.5508021390374331, "percentage": 51.97, "elapsed_time": "1:28:07", "remaining_time": "1:21:26"} |
|
{"current_steps": 150, "total_steps": 279, "loss": 0.2427, "accuracy": 0.893750011920929, "learning_rate": 4.679054270342702e-07, "epoch": 1.6042780748663101, "percentage": 53.76, "elapsed_time": "1:30:55", "remaining_time": "1:18:11"} |
|
{"current_steps": 150, "total_steps": 279, "eval_loss": 0.4994485378265381, "epoch": 1.6042780748663101, "percentage": 53.76, "elapsed_time": "1:33:52", "remaining_time": "1:20:43"} |
|
{"current_steps": 155, "total_steps": 279, "loss": 0.2553, "accuracy": 0.9125000238418579, "learning_rate": 4.3883993981608567e-07, "epoch": 1.6577540106951871, "percentage": 55.56, "elapsed_time": "1:36:40", "remaining_time": "1:17:20"} |
|
{"current_steps": 160, "total_steps": 279, "loss": 0.2627, "accuracy": 0.8999999761581421, "learning_rate": 4.0998293993775234e-07, "epoch": 1.7112299465240641, "percentage": 57.35, "elapsed_time": "1:39:28", "remaining_time": "1:13:58"} |
|
{"current_steps": 165, "total_steps": 279, "loss": 0.2499, "accuracy": 0.90625, "learning_rate": 3.814327974650066e-07, "epoch": 1.7647058823529411, "percentage": 59.14, "elapsed_time": "1:42:16", "remaining_time": "1:10:39"} |
|
{"current_steps": 170, "total_steps": 279, "loss": 0.2275, "accuracy": 0.918749988079071, "learning_rate": 3.532868364233416e-07, "epoch": 1.8181818181818183, "percentage": 60.93, "elapsed_time": "1:45:05", "remaining_time": "1:07:22"} |
|
{"current_steps": 175, "total_steps": 279, "loss": 0.2749, "accuracy": 0.893750011920929, "learning_rate": 3.256410030320304e-07, "epoch": 1.8716577540106951, "percentage": 62.72, "elapsed_time": "1:47:53", "remaining_time": "1:04:07"} |
|
{"current_steps": 180, "total_steps": 279, "loss": 0.2368, "accuracy": 0.9375, "learning_rate": 2.985895386349233e-07, "epoch": 1.9251336898395723, "percentage": 64.52, "elapsed_time": "1:50:43", "remaining_time": "1:00:54"} |
|
{"current_steps": 185, "total_steps": 279, "loss": 0.2766, "accuracy": 0.887499988079071, "learning_rate": 2.7222465844296514e-07, "epoch": 1.9786096256684491, "percentage": 66.31, "elapsed_time": "1:53:33", "remaining_time": "0:57:42"} |
|
{"current_steps": 190, "total_steps": 279, "loss": 0.1829, "accuracy": 0.9624999761581421, "learning_rate": 2.466362371835544e-07, "epoch": 2.0320855614973263, "percentage": 68.1, "elapsed_time": "1:56:22", "remaining_time": "0:54:30"} |
|
{"current_steps": 195, "total_steps": 279, "loss": 0.1495, "accuracy": 0.949999988079071, "learning_rate": 2.2191150272833386e-07, "epoch": 2.085561497326203, "percentage": 69.89, "elapsed_time": "1:59:10", "remaining_time": "0:51:20"} |
|
{"current_steps": 200, "total_steps": 279, "loss": 0.1239, "accuracy": 0.956250011920929, "learning_rate": 1.9813473874379395e-07, "epoch": 2.1390374331550803, "percentage": 71.68, "elapsed_time": "2:01:58", "remaining_time": "0:48:10"} |
|
{"current_steps": 200, "total_steps": 279, "eval_loss": 0.4940880835056305, "epoch": 2.1390374331550803, "percentage": 71.68, "elapsed_time": "2:04:55", "remaining_time": "0:49:20"} |
|
{"current_steps": 205, "total_steps": 279, "loss": 0.1469, "accuracy": 0.96875, "learning_rate": 1.7538699737832237e-07, "epoch": 2.192513368983957, "percentage": 73.48, "elapsed_time": "2:08:16", "remaining_time": "0:46:18"} |
|
{"current_steps": 210, "total_steps": 279, "loss": 0.1481, "accuracy": 0.949999988079071, "learning_rate": 1.5374582296511053e-07, "epoch": 2.2459893048128343, "percentage": 75.27, "elapsed_time": "2:11:03", "remaining_time": "0:43:03"} |
|
{"current_steps": 215, "total_steps": 279, "loss": 0.1182, "accuracy": 0.9624999761581421, "learning_rate": 1.3328498768278418e-07, "epoch": 2.299465240641711, "percentage": 77.06, "elapsed_time": "2:13:52", "remaining_time": "0:39:51"} |
|
{"current_steps": 220, "total_steps": 279, "loss": 0.1353, "accuracy": 0.9624999761581421, "learning_rate": 1.1407424007485928e-07, "epoch": 2.3529411764705883, "percentage": 78.85, "elapsed_time": "2:16:42", "remaining_time": "0:36:39"} |
|
{"current_steps": 225, "total_steps": 279, "loss": 0.1406, "accuracy": 0.9750000238418579, "learning_rate": 9.617906728528679e-08, "epoch": 2.406417112299465, "percentage": 80.65, "elapsed_time": "2:19:31", "remaining_time": "0:33:29"} |
|
{"current_steps": 230, "total_steps": 279, "loss": 0.137, "accuracy": 0.9437500238418579, "learning_rate": 7.966047182060226e-08, "epoch": 2.4598930481283423, "percentage": 82.44, "elapsed_time": "2:22:20", "remaining_time": "0:30:19"} |
|
{"current_steps": 235, "total_steps": 279, "loss": 0.1324, "accuracy": 0.981249988079071, "learning_rate": 6.457476359966684e-08, "epoch": 2.5133689839572195, "percentage": 84.23, "elapsed_time": "2:25:07", "remaining_time": "0:27:10"} |
|
{"current_steps": 240, "total_steps": 279, "loss": 0.1575, "accuracy": 0.949999988079071, "learning_rate": 5.097336799988067e-08, "epoch": 2.5668449197860963, "percentage": 86.02, "elapsed_time": "2:27:56", "remaining_time": "0:24:02"} |
|
{"current_steps": 245, "total_steps": 279, "loss": 0.1404, "accuracy": 0.9375, "learning_rate": 3.8902650554212826e-08, "epoch": 2.620320855614973, "percentage": 87.81, "elapsed_time": "2:30:46", "remaining_time": "0:20:55"} |
|
{"current_steps": 250, "total_steps": 279, "loss": 0.1607, "accuracy": 0.96875, "learning_rate": 2.8403758896638707e-08, "epoch": 2.6737967914438503, "percentage": 89.61, "elapsed_time": "2:33:34", "remaining_time": "0:17:48"} |
|
{"current_steps": 250, "total_steps": 279, "eval_loss": 0.5006157755851746, "epoch": 2.6737967914438503, "percentage": 89.61, "elapsed_time": "2:36:32", "remaining_time": "0:18:09"} |
|
{"current_steps": 255, "total_steps": 279, "loss": 0.1515, "accuracy": 0.949999988079071, "learning_rate": 1.951248249476961e-08, "epoch": 2.7272727272727275, "percentage": 91.4, "elapsed_time": "2:39:21", "remaining_time": "0:14:59"} |
|
{"current_steps": 260, "total_steps": 279, "loss": 0.1517, "accuracy": 0.949999988079071, "learning_rate": 1.2259130647833626e-08, "epoch": 2.7807486631016043, "percentage": 93.19, "elapsed_time": "2:42:10", "remaining_time": "0:11:51"} |
|
{"current_steps": 265, "total_steps": 279, "loss": 0.1479, "accuracy": 0.9125000238418579, "learning_rate": 6.668429165893996e-09, "epoch": 2.834224598930481, "percentage": 94.98, "elapsed_time": "2:45:00", "remaining_time": "0:08:43"} |
|
{"current_steps": 270, "total_steps": 279, "loss": 0.1573, "accuracy": 0.9375, "learning_rate": 2.759436082516664e-09, "epoch": 2.8877005347593583, "percentage": 96.77, "elapsed_time": "2:47:49", "remaining_time": "0:05:35"} |
|
{"current_steps": 275, "total_steps": 279, "loss": 0.1708, "accuracy": 0.918749988079071, "learning_rate": 5.454766882097006e-10, "epoch": 2.9411764705882355, "percentage": 98.57, "elapsed_time": "2:50:37", "remaining_time": "0:02:28"} |
|
{"current_steps": 279, "total_steps": 279, "epoch": 2.983957219251337, "percentage": 100.0, "elapsed_time": "2:53:23", "remaining_time": "0:00:00"} |
|
|