|
{"current_steps": 5, "total_steps": 321, "loss": 0.6898, "accuracy": 0.34375, "learning_rate": 5e-07, "epoch": 0.04672897196261682, "percentage": 1.56, "elapsed_time": "0:02:53", "remaining_time": "3:03:06"} |
|
{"current_steps": 10, "total_steps": 321, "loss": 0.6465, "accuracy": 0.625, "learning_rate": 1e-06, "epoch": 0.09345794392523364, "percentage": 3.12, "elapsed_time": "0:05:42", "remaining_time": "2:57:30"} |
|
{"current_steps": 15, "total_steps": 321, "loss": 0.6365, "accuracy": 0.65625, "learning_rate": 9.993623730611148e-07, "epoch": 0.14018691588785046, "percentage": 4.67, "elapsed_time": "0:08:30", "remaining_time": "2:53:41"} |
|
{"current_steps": 20, "total_steps": 321, "loss": 0.6273, "accuracy": 0.731249988079071, "learning_rate": 9.97451118516912e-07, "epoch": 0.18691588785046728, "percentage": 6.23, "elapsed_time": "0:11:19", "remaining_time": "2:50:23"} |
|
{"current_steps": 25, "total_steps": 321, "loss": 0.6348, "accuracy": 0.7124999761581421, "learning_rate": 9.94271111036929e-07, "epoch": 0.2336448598130841, "percentage": 7.79, "elapsed_time": "0:14:08", "remaining_time": "2:47:20"} |
|
{"current_steps": 30, "total_steps": 321, "loss": 0.5938, "accuracy": 0.71875, "learning_rate": 9.898304612549066e-07, "epoch": 0.2803738317757009, "percentage": 9.35, "elapsed_time": "0:16:58", "remaining_time": "2:44:36"} |
|
{"current_steps": 35, "total_steps": 321, "loss": 0.5785, "accuracy": 0.6937500238418579, "learning_rate": 9.841404950825536e-07, "epoch": 0.32710280373831774, "percentage": 10.9, "elapsed_time": "0:19:46", "remaining_time": "2:41:37"} |
|
{"current_steps": 40, "total_steps": 321, "loss": 0.5829, "accuracy": 0.737500011920929, "learning_rate": 9.77215724822721e-07, "epoch": 0.37383177570093457, "percentage": 12.46, "elapsed_time": "0:22:34", "remaining_time": "2:38:38"} |
|
{"current_steps": 45, "total_steps": 321, "loss": 0.5896, "accuracy": 0.71875, "learning_rate": 9.69073812155662e-07, "epoch": 0.4205607476635514, "percentage": 14.02, "elapsed_time": "0:25:23", "remaining_time": "2:35:46"} |
|
{"current_steps": 50, "total_steps": 321, "loss": 0.5529, "accuracy": 0.78125, "learning_rate": 9.597355230927788e-07, "epoch": 0.4672897196261682, "percentage": 15.58, "elapsed_time": "0:28:11", "remaining_time": "2:32:47"} |
|
{"current_steps": 50, "total_steps": 321, "eval_loss": 0.5947180390357971, "epoch": 0.4672897196261682, "percentage": 15.58, "elapsed_time": "0:31:34", "remaining_time": "2:51:06"} |
|
{"current_steps": 55, "total_steps": 321, "loss": 0.5467, "accuracy": 0.75, "learning_rate": 9.4922467501275e-07, "epoch": 0.514018691588785, "percentage": 17.13, "elapsed_time": "0:34:22", "remaining_time": "2:46:13"} |
|
{"current_steps": 60, "total_steps": 321, "loss": 0.5409, "accuracy": 0.768750011920929, "learning_rate": 9.375680759151206e-07, "epoch": 0.5607476635514018, "percentage": 18.69, "elapsed_time": "0:37:10", "remaining_time": "2:41:41"} |
|
{"current_steps": 65, "total_steps": 321, "loss": 0.5337, "accuracy": 0.7437499761581421, "learning_rate": 9.247954560462927e-07, "epoch": 0.6074766355140186, "percentage": 20.25, "elapsed_time": "0:39:59", "remaining_time": "2:37:29"} |
|
{"current_steps": 70, "total_steps": 321, "loss": 0.533, "accuracy": 0.762499988079071, "learning_rate": 9.109393920723001e-07, "epoch": 0.6542056074766355, "percentage": 21.81, "elapsed_time": "0:42:47", "remaining_time": "2:33:25"} |
|
{"current_steps": 75, "total_steps": 321, "loss": 0.5452, "accuracy": 0.7437499761581421, "learning_rate": 8.960352239917699e-07, "epoch": 0.7009345794392523, "percentage": 23.36, "elapsed_time": "0:45:35", "remaining_time": "2:29:31"} |
|
{"current_steps": 80, "total_steps": 321, "loss": 0.4954, "accuracy": 0.8062499761581421, "learning_rate": 8.801209650009814e-07, "epoch": 0.7476635514018691, "percentage": 24.92, "elapsed_time": "0:48:23", "remaining_time": "2:25:48"} |
|
{"current_steps": 85, "total_steps": 321, "loss": 0.5641, "accuracy": 0.731249988079071, "learning_rate": 8.632372045409141e-07, "epoch": 0.794392523364486, "percentage": 26.48, "elapsed_time": "0:51:12", "remaining_time": "2:22:09"} |
|
{"current_steps": 90, "total_steps": 321, "loss": 0.5553, "accuracy": 0.706250011920929, "learning_rate": 8.454270047735642e-07, "epoch": 0.8411214953271028, "percentage": 28.04, "elapsed_time": "0:54:00", "remaining_time": "2:18:37"} |
|
{"current_steps": 95, "total_steps": 321, "loss": 0.538, "accuracy": 0.7749999761581421, "learning_rate": 8.267357907515661e-07, "epoch": 0.8878504672897196, "percentage": 29.6, "elapsed_time": "0:56:49", "remaining_time": "2:15:09"} |
|
{"current_steps": 100, "total_steps": 321, "loss": 0.5159, "accuracy": 0.824999988079071, "learning_rate": 8.072112345612433e-07, "epoch": 0.9345794392523364, "percentage": 31.15, "elapsed_time": "0:59:36", "remaining_time": "2:11:43"} |
|
{"current_steps": 100, "total_steps": 321, "eval_loss": 0.5285552144050598, "epoch": 0.9345794392523364, "percentage": 31.15, "elapsed_time": "1:02:58", "remaining_time": "2:19:10"} |
|
{"current_steps": 105, "total_steps": 321, "loss": 0.4808, "accuracy": 0.7875000238418579, "learning_rate": 7.869031337345827e-07, "epoch": 0.9813084112149533, "percentage": 32.71, "elapsed_time": "1:06:21", "remaining_time": "2:16:31"} |
|
{"current_steps": 110, "total_steps": 321, "loss": 0.3194, "accuracy": 0.831250011920929, "learning_rate": 7.658632842402432e-07, "epoch": 1.02803738317757, "percentage": 34.27, "elapsed_time": "1:09:10", "remaining_time": "2:12:41"} |
|
{"current_steps": 115, "total_steps": 321, "loss": 0.2252, "accuracy": 0.9125000238418579, "learning_rate": 7.441453483775353e-07, "epoch": 1.074766355140187, "percentage": 35.83, "elapsed_time": "1:11:58", "remaining_time": "2:08:55"} |
|
{"current_steps": 120, "total_steps": 321, "loss": 0.2292, "accuracy": 0.9312499761581421, "learning_rate": 7.218047179103112e-07, "epoch": 1.1214953271028036, "percentage": 37.38, "elapsed_time": "1:14:47", "remaining_time": "2:05:16"} |
|
{"current_steps": 125, "total_steps": 321, "loss": 0.233, "accuracy": 0.90625, "learning_rate": 6.988983727898413e-07, "epoch": 1.1682242990654206, "percentage": 38.94, "elapsed_time": "1:17:36", "remaining_time": "2:01:41"} |
|
{"current_steps": 130, "total_steps": 321, "loss": 0.2381, "accuracy": 0.9125000238418579, "learning_rate": 6.754847358270066e-07, "epoch": 1.2149532710280373, "percentage": 40.5, "elapsed_time": "1:20:25", "remaining_time": "1:58:10"} |
|
{"current_steps": 135, "total_steps": 321, "loss": 0.2453, "accuracy": 0.9375, "learning_rate": 6.516235236844661e-07, "epoch": 1.2616822429906542, "percentage": 42.06, "elapsed_time": "1:23:12", "remaining_time": "1:54:39"} |
|
{"current_steps": 140, "total_steps": 321, "loss": 0.2056, "accuracy": 0.8999999761581421, "learning_rate": 6.273755945688457e-07, "epoch": 1.308411214953271, "percentage": 43.61, "elapsed_time": "1:26:00", "remaining_time": "1:51:11"} |
|
{"current_steps": 145, "total_steps": 321, "loss": 0.2691, "accuracy": 0.8812500238418579, "learning_rate": 6.02802793011411e-07, "epoch": 1.355140186915888, "percentage": 45.17, "elapsed_time": "1:28:49", "remaining_time": "1:47:49"} |
|
{"current_steps": 150, "total_steps": 321, "loss": 0.2666, "accuracy": 0.9312499761581421, "learning_rate": 5.779677921331093e-07, "epoch": 1.4018691588785046, "percentage": 46.73, "elapsed_time": "1:31:37", "remaining_time": "1:44:26"} |
|
{"current_steps": 150, "total_steps": 321, "eval_loss": 0.5667340159416199, "epoch": 1.4018691588785046, "percentage": 46.73, "elapsed_time": "1:34:59", "remaining_time": "1:48:17"} |
|
{"current_steps": 155, "total_steps": 321, "loss": 0.2286, "accuracy": 0.9437500238418579, "learning_rate": 5.529339337962897e-07, "epoch": 1.4485981308411215, "percentage": 48.29, "elapsed_time": "1:37:48", "remaining_time": "1:44:44"} |
|
{"current_steps": 160, "total_steps": 321, "loss": 0.233, "accuracy": 0.925000011920929, "learning_rate": 5.277650670507915e-07, "epoch": 1.4953271028037383, "percentage": 49.84, "elapsed_time": "1:40:38", "remaining_time": "1:41:16"} |
|
{"current_steps": 165, "total_steps": 321, "loss": 0.3141, "accuracy": 0.925000011920929, "learning_rate": 5.025253852864471e-07, "epoch": 1.542056074766355, "percentage": 51.4, "elapsed_time": "1:43:26", "remaining_time": "1:37:48"} |
|
{"current_steps": 170, "total_steps": 321, "loss": 0.275, "accuracy": 0.925000011920929, "learning_rate": 4.77279262507344e-07, "epoch": 1.588785046728972, "percentage": 52.96, "elapsed_time": "1:46:14", "remaining_time": "1:34:21"} |
|
{"current_steps": 175, "total_steps": 321, "loss": 0.2774, "accuracy": 0.9312499761581421, "learning_rate": 4.5209108914542714e-07, "epoch": 1.6355140186915889, "percentage": 54.52, "elapsed_time": "1:49:02", "remaining_time": "1:30:58"} |
|
{"current_steps": 180, "total_steps": 321, "loss": 0.2598, "accuracy": 0.9312499761581421, "learning_rate": 4.2702510783220475e-07, "epoch": 1.6822429906542056, "percentage": 56.07, "elapsed_time": "1:51:51", "remaining_time": "1:27:37"} |
|
{"current_steps": 185, "total_steps": 321, "loss": 0.2955, "accuracy": 0.925000011920929, "learning_rate": 4.0214524954741586e-07, "epoch": 1.7289719626168223, "percentage": 57.63, "elapsed_time": "1:54:39", "remaining_time": "1:24:17"} |
|
{"current_steps": 190, "total_steps": 321, "loss": 0.2401, "accuracy": 0.9312499761581421, "learning_rate": 3.7751497056257305e-07, "epoch": 1.7757009345794392, "percentage": 59.19, "elapsed_time": "1:57:28", "remaining_time": "1:20:59"} |
|
{"current_steps": 195, "total_steps": 321, "loss": 0.3042, "accuracy": 0.9125000238418579, "learning_rate": 3.531970905952478e-07, "epoch": 1.8224299065420562, "percentage": 60.75, "elapsed_time": "2:00:16", "remaining_time": "1:17:43"} |
|
{"current_steps": 200, "total_steps": 321, "loss": 0.3127, "accuracy": 0.893750011920929, "learning_rate": 3.2925363258689553e-07, "epoch": 1.8691588785046729, "percentage": 62.31, "elapsed_time": "2:03:05", "remaining_time": "1:14:28"} |
|
{"current_steps": 200, "total_steps": 321, "eval_loss": 0.5355702042579651, "epoch": 1.8691588785046729, "percentage": 62.31, "elapsed_time": "2:06:28", "remaining_time": "1:16:30"} |
|
{"current_steps": 205, "total_steps": 321, "loss": 0.2513, "accuracy": 0.918749988079071, "learning_rate": 3.0574566451286086e-07, "epoch": 1.9158878504672896, "percentage": 63.86, "elapsed_time": "2:09:45", "remaining_time": "1:13:25"} |
|
{"current_steps": 210, "total_steps": 321, "loss": 0.2764, "accuracy": 0.90625, "learning_rate": 2.8273314362803333e-07, "epoch": 1.9626168224299065, "percentage": 65.42, "elapsed_time": "2:12:33", "remaining_time": "1:10:03"} |
|
{"current_steps": 215, "total_steps": 321, "loss": 0.2701, "accuracy": 0.9437500238418579, "learning_rate": 2.602747635454047e-07, "epoch": 2.0093457943925235, "percentage": 66.98, "elapsed_time": "2:15:21", "remaining_time": "1:06:44"} |
|
{"current_steps": 220, "total_steps": 321, "loss": 0.1493, "accuracy": 0.9750000238418579, "learning_rate": 2.384278045375523e-07, "epoch": 2.05607476635514, "percentage": 68.54, "elapsed_time": "2:18:10", "remaining_time": "1:03:25"} |
|
{"current_steps": 225, "total_steps": 321, "loss": 0.1552, "accuracy": 0.9624999761581421, "learning_rate": 2.1724798744286071e-07, "epoch": 2.102803738317757, "percentage": 70.09, "elapsed_time": "2:20:58", "remaining_time": "1:00:08"} |
|
{"current_steps": 230, "total_steps": 321, "loss": 0.1433, "accuracy": 0.949999988079071, "learning_rate": 1.9678933154909095e-07, "epoch": 2.149532710280374, "percentage": 71.65, "elapsed_time": "2:23:47", "remaining_time": "0:56:53"} |
|
{"current_steps": 235, "total_steps": 321, "loss": 0.1523, "accuracy": 0.9437500238418579, "learning_rate": 1.77104016816768e-07, "epoch": 2.196261682242991, "percentage": 73.21, "elapsed_time": "2:26:36", "remaining_time": "0:53:39"} |
|
{"current_steps": 240, "total_steps": 321, "loss": 0.1379, "accuracy": 0.9624999761581421, "learning_rate": 1.5824225079378684e-07, "epoch": 2.2429906542056073, "percentage": 74.77, "elapsed_time": "2:29:25", "remaining_time": "0:50:25"} |
|
{"current_steps": 245, "total_steps": 321, "loss": 0.1504, "accuracy": 0.956250011920929, "learning_rate": 1.4025214056067237e-07, "epoch": 2.289719626168224, "percentage": 76.32, "elapsed_time": "2:32:13", "remaining_time": "0:47:13"} |
|
{"current_steps": 250, "total_steps": 321, "loss": 0.152, "accuracy": 0.981249988079071, "learning_rate": 1.2317957003309725e-07, "epoch": 2.336448598130841, "percentage": 77.88, "elapsed_time": "2:35:01", "remaining_time": "0:44:01"} |
|
{"current_steps": 250, "total_steps": 321, "eval_loss": 0.5442168116569519, "epoch": 2.336448598130841, "percentage": 77.88, "elapsed_time": "2:38:23", "remaining_time": "0:44:59"} |
|
{"current_steps": 255, "total_steps": 321, "loss": 0.1378, "accuracy": 0.9624999761581421, "learning_rate": 1.0706808293459873e-07, "epoch": 2.383177570093458, "percentage": 79.44, "elapsed_time": "2:41:12", "remaining_time": "0:41:43"} |
|
{"current_steps": 260, "total_steps": 321, "loss": 0.1359, "accuracy": 0.949999988079071, "learning_rate": 9.195877173797534e-08, "epoch": 2.4299065420560746, "percentage": 81.0, "elapsed_time": "2:44:01", "remaining_time": "0:38:28"} |
|
{"current_steps": 265, "total_steps": 321, "loss": 0.1319, "accuracy": 0.9437500238418579, "learning_rate": 7.789017285861438e-08, "epoch": 2.4766355140186915, "percentage": 82.55, "elapsed_time": "2:46:48", "remaining_time": "0:35:15"} |
|
{"current_steps": 270, "total_steps": 321, "loss": 0.1606, "accuracy": 0.96875, "learning_rate": 6.489816836706785e-08, "epoch": 2.5233644859813085, "percentage": 84.11, "elapsed_time": "2:49:38", "remaining_time": "0:32:02"} |
|
{"current_steps": 275, "total_steps": 321, "loss": 0.1559, "accuracy": 0.956250011920929, "learning_rate": 5.3015894471550914e-08, "epoch": 2.5700934579439254, "percentage": 85.67, "elapsed_time": "2:52:27", "remaining_time": "0:28:50"} |
|
{"current_steps": 280, "total_steps": 321, "loss": 0.127, "accuracy": 0.949999988079071, "learning_rate": 4.227365700378799e-08, "epoch": 2.616822429906542, "percentage": 87.23, "elapsed_time": "2:55:15", "remaining_time": "0:25:39"} |
|
{"current_steps": 285, "total_steps": 321, "loss": 0.124, "accuracy": 0.9437500238418579, "learning_rate": 3.269885412375223e-08, "epoch": 2.663551401869159, "percentage": 88.79, "elapsed_time": "2:58:03", "remaining_time": "0:22:29"} |
|
{"current_steps": 290, "total_steps": 321, "loss": 0.1606, "accuracy": 0.9750000238418579, "learning_rate": 2.4315906440446952e-08, "epoch": 2.710280373831776, "percentage": 90.34, "elapsed_time": "3:00:51", "remaining_time": "0:19:19"} |
|
{"current_steps": 295, "total_steps": 321, "loss": 0.1412, "accuracy": 0.949999988079071, "learning_rate": 1.7146194726952778e-08, "epoch": 2.7570093457943923, "percentage": 91.9, "elapsed_time": "3:03:40", "remaining_time": "0:16:11"} |
|
{"current_steps": 300, "total_steps": 321, "loss": 0.1431, "accuracy": 0.9312499761581421, "learning_rate": 1.1208005388599951e-08, "epoch": 2.803738317757009, "percentage": 93.46, "elapsed_time": "3:06:29", "remaining_time": "0:13:03"} |
|
{"current_steps": 300, "total_steps": 321, "eval_loss": 0.5449995398521423, "epoch": 2.803738317757009, "percentage": 93.46, "elapsed_time": "3:09:51", "remaining_time": "0:13:17"} |
|
{"current_steps": 305, "total_steps": 321, "loss": 0.1681, "accuracy": 0.949999988079071, "learning_rate": 6.516483823349794e-09, "epoch": 2.850467289719626, "percentage": 95.02, "elapsed_time": "3:13:10", "remaining_time": "0:10:08"} |
|
{"current_steps": 310, "total_steps": 321, "loss": 0.1553, "accuracy": 0.949999988079071, "learning_rate": 3.0835957933397773e-09, "epoch": 2.897196261682243, "percentage": 96.57, "elapsed_time": "3:15:59", "remaining_time": "0:06:57"} |
|
{"current_steps": 315, "total_steps": 321, "loss": 0.137, "accuracy": 0.925000011920929, "learning_rate": 9.180969061143851e-10, "epoch": 2.94392523364486, "percentage": 98.13, "elapsed_time": "3:18:46", "remaining_time": "0:03:47"} |
|
{"current_steps": 320, "total_steps": 321, "loss": 0.156, "accuracy": 0.956250011920929, "learning_rate": 2.5510283379992504e-11, "epoch": 2.9906542056074765, "percentage": 99.69, "elapsed_time": "3:21:34", "remaining_time": "0:00:37"} |
|
{"current_steps": 321, "total_steps": 321, "epoch": 3.0, "percentage": 100.0, "elapsed_time": "3:22:38", "remaining_time": "0:00:00"} |
|
|