--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_l0_0_75 results: [] --- # AA_preference_l0_0_75 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_l0_0_75 dataset. It achieves the following results on the evaluation set: - Loss: 0.5643 - Rewards/chosen: 1.3942 - Rewards/rejected: -0.7947 - Rewards/accuracies: 0.8000 - Rewards/margins: 2.1889 - Logps/rejected: -224.1609 - Logps/chosen: -246.0838 - Logits/rejected: -2.3264 - Logits/chosen: -2.3596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5946 | 0.7463 | 50 | 0.5850 | 1.2899 | -0.0802 | 0.7333 | 1.3701 | -217.0163 | -247.1266 | -2.3881 | -2.4191 | | 0.255 | 1.4925 | 100 | 0.5857 | 1.4526 | -0.5760 | 0.7958 | 2.0286 | -221.9741 | -245.4996 | -2.4099 | -2.4342 | | 0.1492 | 2.2388 | 150 | 0.5706 | 1.4938 | -0.5466 | 0.7917 | 2.0403 | -221.6795 | -245.0877 | -2.3284 | -2.3634 | | 0.1536 | 2.9851 | 200 | 0.5642 | 1.3949 | -0.7954 | 0.7917 | 2.1903 | -224.1678 | -246.0766 | -2.3262 | -2.3595 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3