File size: 2,803 Bytes
e92c1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: other
base_model: llava-hf/llava-v1.6-mistral-7b-hf
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: AA_preference_random_0_50
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# AA_preference_random_0_50
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_random_0_50 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6024
- Rewards/chosen: 1.2815
- Rewards/rejected: -0.9739
- Rewards/accuracies: 0.7917
- Rewards/margins: 2.2554
- Logps/rejected: -218.7351
- Logps/chosen: -248.4081
- Logits/rejected: -2.2174
- Logits/chosen: -2.2436
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5788 | 0.7463 | 50 | 0.5886 | 1.3112 | -0.0126 | 0.7667 | 1.3238 | -209.1226 | -248.1118 | -2.3816 | -2.3948 |
| 0.2623 | 1.4925 | 100 | 0.6057 | 1.5827 | -0.4999 | 0.8042 | 2.0826 | -213.9953 | -245.3966 | -2.2436 | -2.2727 |
| 0.1176 | 2.2388 | 150 | 0.5923 | 1.4688 | -0.7137 | 0.7875 | 2.1825 | -216.1334 | -246.5355 | -2.2235 | -2.2485 |
| 0.1387 | 2.9851 | 200 | 0.6027 | 1.2815 | -0.9739 | 0.7875 | 2.2554 | -218.7351 | -248.4080 | -2.2176 | -2.2437 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.3
|