--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: AA_preference_random_0_50 results: [] --- # AA_preference_random_0_50 This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_random_0_50 dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Rewards/chosen: 1.2815 - Rewards/rejected: -0.9739 - Rewards/accuracies: 0.7917 - Rewards/margins: 2.2554 - Logps/rejected: -218.7351 - Logps/chosen: -248.4081 - Logits/rejected: -2.2174 - Logits/chosen: -2.2436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5788 | 0.7463 | 50 | 0.5886 | 1.3112 | -0.0126 | 0.7667 | 1.3238 | -209.1226 | -248.1118 | -2.3816 | -2.3948 | | 0.2623 | 1.4925 | 100 | 0.6057 | 1.5827 | -0.4999 | 0.8042 | 2.0826 | -213.9953 | -245.3966 | -2.2436 | -2.2727 | | 0.1176 | 2.2388 | 150 | 0.5923 | 1.4688 | -0.7137 | 0.7875 | 2.1825 | -216.1334 | -246.5355 | -2.2235 | -2.2485 | | 0.1387 | 2.9851 | 200 | 0.6027 | 1.2815 | -0.9739 | 0.7875 | 2.2554 | -218.7351 | -248.4080 | -2.2176 | -2.2437 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3