--- library_name: transformers license: other base_model: llava-hf/llava-v1.6-mistral-7b-hf tags: - llama-factory - full - generated_from_trainer model-index: - name: RLAIF-V-Coccur-q0_25_preference results: [] --- # RLAIF-V-Coccur-q0_25_preference This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the RLAIF-V-Coccur-q0_25_preference dataset. It achieves the following results on the evaluation set: - Loss: 0.5440 - Rewards/chosen: -2.3911 - Rewards/rejected: -4.1460 - Rewards/accuracies: 0.7188 - Rewards/margins: 1.7550 - Logps/rejected: -201.5194 - Logps/chosen: -183.7933 - Logits/rejected: -2.7049 - Logits/chosen: -2.7311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5904 | 0.6944 | 50 | 0.5585 | 0.1767 | -0.5308 | 0.6953 | 0.7075 | -165.3675 | -158.1156 | -2.7400 | -2.7505 | | 0.2124 | 1.3889 | 100 | 0.5330 | -0.9785 | -2.2414 | 0.7344 | 1.2630 | -182.4733 | -169.6674 | -2.6846 | -2.7028 | | 0.1027 | 2.0833 | 150 | 0.5209 | -1.3289 | -2.7382 | 0.7305 | 1.4093 | -187.4415 | -173.1719 | -2.7648 | -2.7841 | | 0.0793 | 2.7778 | 200 | 0.5435 | -2.3758 | -4.1313 | 0.7227 | 1.7554 | -201.3717 | -183.6412 | -2.7055 | -2.7316 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.3