--- license: apache-2.0 base_model: - deepseek-ai/DeepSeek-V3 tags: - deepseek_v3 - bf16 - Safetensors - custom_code - Pruned --- # huihui-ai/DeepSeek-V3-Pruned-Coder-411B This is a pruned version of the [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3), reduced from 256 experts to 160 experts. The pruned model is mainly used for [code](https://huggingface.co/huihui-ai/DeepSeek-V3-Pruned-Coder-411B/blob/main/coding_problems.py) generation. This is a test validation to see if we can prune the model according to professional requirements and still maintain acceptable performance. The model size has been reduced by about 1/3, and no distortion has occurred. This allows the model to be pruned according to one's needs. This pruned model has a total parameter is equivalent to 441B. We will also try to prune [deepseek-ai/DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1). ## Use with ollama You can use [huihui_ai/deepseek-v3-pruned](https://ollama.com/huihui_ai/deepseek-v3-pruned) directly ``` ollama run huihui_ai/deepseek-v3-pruned ``` ## Use with transformers ``` from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch # Load the model and tokenizer NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-Pruned-Coder-411B" quant_config_4 = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_enable_fp32_cpu_offload=True, ) model = AutoModelForCausalLM.from_pretrained( NEW_MODEL_ID, device_map="auto", trust_remote_code=True, quantization_config=quant_config_4, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clear": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True) response_token_ids = model.generate(tokenized_message['input_ids'].to("cuda:0"), use_cache=False, pad_token_id=tokenizer.pad_token_id, max_new_tokens=8192) generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):] response = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Response: {response}") ``` ### Donation If you like it, please click 'like' and follow us for more updates. You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin: ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```