Upload GP-MoLFormer code and pre-trained model
Browse files- config.json +33 -0
- configuration_molformer.py +174 -0
- model.safetensors +3 -0
- modeling_molformer.py +1075 -0
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MolformerForCausalLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_molformer.MolformerConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_molformer.MolformerForCausalLM"
|
8 |
+
},
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"deterministic_eval": false,
|
11 |
+
"embedding_dropout_prob": 0.2,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"feature_map_kernel": "relu",
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 768,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 768,
|
19 |
+
"is_decoder": true,
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"linear_attention_eps": 1e-06,
|
22 |
+
"max_position_embeddings": 202,
|
23 |
+
"model_type": "molformer",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 12,
|
26 |
+
"num_random_features": 32,
|
27 |
+
"pad_token_id": 2,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.32.1",
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 2362
|
33 |
+
}
|
configuration_molformer.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Molformer model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.onnx import OnnxConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
MOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"ibm/GP-MoLFormer-Uniq": "https://huggingface.co/ibm/GP-MoLFormer-Uniq/resolve/main/config.json",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class MolformerConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`MolformerModel`]. It is used to instantiate an
|
35 |
+
Molformer model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the Molformer
|
37 |
+
[ibm/MoLFormer-XL-both-10pct](https://huggingface.co/ibm/MoLFormer-XL-both-10pct) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 2362):
|
45 |
+
Vocabulary size of the Molformer model. Defines the number of different tokens that can be represented by
|
46 |
+
the `inputs_ids` passed when calling [`MolformerModel`] or [`TFMolformerModel`].
|
47 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
48 |
+
Dimension of the encoder layers and the pooler layer.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
intermediate_size (`int`, *optional*, defaults to 768):
|
54 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
55 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
58 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
embedding_dropout_prob (`float`, *optional*, defaults to 0.2):
|
61 |
+
The dropout probability for the word embeddings.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 202):
|
63 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
64 |
+
just in case (e.g., 512 or 1024 or 1536).
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
linear_attention_eps (`float`, *optional*, defaults to 1e-06):
|
70 |
+
The epsilon used by the linear attention layers normalization step.
|
71 |
+
num_random_features (`int`, *optional*, defaults to 32):
|
72 |
+
Random feature map dimension used in linear attention.
|
73 |
+
feature_map_kernel (`str` or `function`, *optional*, defaults to `"relu"`):
|
74 |
+
The non-linear activation function (function or string) in the generalized random features. If string,
|
75 |
+
`"gelu"`, `"relu"`, `"selu"`, and `"gelu_new"` ar supported.
|
76 |
+
deterministic_eval (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether the random features should only be redrawn when training or not. If `True` and `model.training` is
|
78 |
+
`False`, linear attention random feature weights will be constant, i.e., deterministic.
|
79 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
80 |
+
Beginning of stream token id.
|
81 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
82 |
+
End of stream token id.
|
83 |
+
pad_token_id (`int`, *optional*, defaults to 2):
|
84 |
+
The id of the _padding_ token.
|
85 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to tie weight embeddings
|
87 |
+
is_decoder (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
|
89 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
91 |
+
relevant if `config.is_decoder=True`.
|
92 |
+
|
93 |
+
Example:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import MolformerModel, MolformerConfig
|
97 |
+
|
98 |
+
>>> # Initializing a Molformer ibm/MoLFormer-XL-both-10pct style configuration
|
99 |
+
>>> configuration = MolformerConfig()
|
100 |
+
|
101 |
+
>>> # Initializing a model from the ibm/MoLFormer-XL-both-10pct style configuration
|
102 |
+
>>> model = MolformerModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
model_type = "molformer"
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_size=2362,
|
112 |
+
hidden_size=768,
|
113 |
+
num_hidden_layers=12,
|
114 |
+
num_attention_heads=12,
|
115 |
+
intermediate_size=768,
|
116 |
+
hidden_act="gelu",
|
117 |
+
hidden_dropout_prob=0.1,
|
118 |
+
embedding_dropout_prob=0.2,
|
119 |
+
max_position_embeddings=202,
|
120 |
+
initializer_range=0.02,
|
121 |
+
layer_norm_eps=1e-12,
|
122 |
+
linear_attention_eps=1e-6,
|
123 |
+
num_random_features=32,
|
124 |
+
feature_map_kernel="relu",
|
125 |
+
deterministic_eval=False,
|
126 |
+
bos_token_id=0,
|
127 |
+
eos_token_id=1,
|
128 |
+
pad_token_id=2,
|
129 |
+
tie_word_embeddings=False,
|
130 |
+
is_decoder=True,
|
131 |
+
use_cache=True,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
super().__init__(
|
135 |
+
bos_token_id=bos_token_id,
|
136 |
+
eos_token_id=eos_token_id,
|
137 |
+
pad_token_id=pad_token_id,
|
138 |
+
tie_word_embeddings=tie_word_embeddings,
|
139 |
+
**kwargs
|
140 |
+
)
|
141 |
+
|
142 |
+
self.vocab_size = vocab_size
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.num_hidden_layers = num_hidden_layers
|
145 |
+
self.num_attention_heads = num_attention_heads
|
146 |
+
self.hidden_act = hidden_act
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
149 |
+
self.embedding_dropout_prob = embedding_dropout_prob
|
150 |
+
self.max_position_embeddings = max_position_embeddings
|
151 |
+
self.initializer_range = initializer_range
|
152 |
+
self.layer_norm_eps = layer_norm_eps
|
153 |
+
self.linear_attention_eps = linear_attention_eps
|
154 |
+
self.num_random_features = num_random_features
|
155 |
+
self.feature_map_kernel = feature_map_kernel
|
156 |
+
self.deterministic_eval = deterministic_eval
|
157 |
+
self.is_decoder = is_decoder
|
158 |
+
self.use_cache = use_cache
|
159 |
+
|
160 |
+
|
161 |
+
# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->Molformer
|
162 |
+
class MolformerOnnxConfig(OnnxConfig):
|
163 |
+
@property
|
164 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
165 |
+
if self.task == "multiple-choice":
|
166 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
167 |
+
else:
|
168 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
169 |
+
return OrderedDict(
|
170 |
+
[
|
171 |
+
("input_ids", dynamic_axis),
|
172 |
+
("attention_mask", dynamic_axis),
|
173 |
+
]
|
174 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2754f36d8cebc399a54cc486285b81105862159cda42d5af8715d12fd49ebd3c
|
3 |
+
size 187248784
|
modeling_molformer.py
ADDED
@@ -0,0 +1,1075 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Molformer model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
)
|
32 |
+
from transformers.modeling_utils import PreTrainedModel
|
33 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
34 |
+
from transformers.utils import (
|
35 |
+
add_code_sample_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_molformer import MolformerConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "ibm/GP-MoLFormer-Uniq"
|
47 |
+
_CONFIG_FOR_DOC = "MolformerConfig"
|
48 |
+
|
49 |
+
MOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"ibm/GP-MoLFormer-Uniq",
|
51 |
+
# See all MoLFormer models at https://huggingface.co/models?filter=molformer
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
# Copied from transformers.models.esm.modeling_esm.rotate_half
|
56 |
+
def rotate_half(x):
|
57 |
+
x1, x2 = x.chunk(2, dim=-1)
|
58 |
+
return torch.cat((-x2, x1), dim=-1)
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
62 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
63 |
+
cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
|
64 |
+
sin = sin[position_ids].unsqueeze(1)
|
65 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
66 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
67 |
+
return q_embed, k_embed
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Molformer
|
71 |
+
class MolformerRotaryEmbedding(nn.Module):
|
72 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
self.dim = dim
|
76 |
+
self.max_position_embeddings = max_position_embeddings
|
77 |
+
self.base = base
|
78 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
79 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
80 |
+
|
81 |
+
# Build here to make `torch.jit.trace` work.
|
82 |
+
self._set_cos_sin_cache(
|
83 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
84 |
+
)
|
85 |
+
|
86 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
87 |
+
self.max_seq_len_cached = seq_len
|
88 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
89 |
+
|
90 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
91 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
92 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
93 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
94 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
95 |
+
|
96 |
+
def forward(self, x, seq_len=None):
|
97 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
98 |
+
if seq_len > self.max_seq_len_cached:
|
99 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
100 |
+
|
101 |
+
return (
|
102 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
103 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
class MolformerEmbeddings(nn.Module):
|
108 |
+
"""Construct the embeddings from word embeddings."""
|
109 |
+
|
110 |
+
def __init__(self, config):
|
111 |
+
super().__init__()
|
112 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
113 |
+
self.dropout = nn.Dropout(config.embedding_dropout_prob)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None
|
117 |
+
) -> torch.Tensor:
|
118 |
+
if inputs_embeds is None:
|
119 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
120 |
+
|
121 |
+
embeddings = inputs_embeds
|
122 |
+
embeddings = self.dropout(embeddings)
|
123 |
+
return embeddings
|
124 |
+
|
125 |
+
|
126 |
+
class MolformerFeatureMap(nn.Module):
|
127 |
+
def __init__(self, config):
|
128 |
+
super().__init__()
|
129 |
+
self.query_size = config.hidden_size // config.num_attention_heads
|
130 |
+
self.num_components = config.num_random_features
|
131 |
+
self.orthogonal_random_weights()
|
132 |
+
if isinstance(config.feature_map_kernel, str):
|
133 |
+
self.kernel = ACT2FN[config.feature_map_kernel]
|
134 |
+
else:
|
135 |
+
self.kernel = config.feature_map_kernel
|
136 |
+
self.deterministic = config.deterministic_eval
|
137 |
+
|
138 |
+
def orthogonal_random_weights(self, device=None):
|
139 |
+
# make sure query size evenly divides feature size (round up)
|
140 |
+
num_batches = math.ceil(self.num_components / self.query_size)
|
141 |
+
|
142 |
+
def orthogonal_batch(size):
|
143 |
+
block = torch.randn(size, size, device=device)
|
144 |
+
norms = torch.linalg.norm(block, dim=1).unsqueeze(0)
|
145 |
+
Q, _ = torch.linalg.qr(block)
|
146 |
+
return Q * norms
|
147 |
+
|
148 |
+
random_weights = torch.cat([orthogonal_batch(self.query_size) for _ in range(num_batches)], dim=1)
|
149 |
+
random_weights = random_weights[:, : self.num_components]
|
150 |
+
self.register_buffer("weight", random_weights)
|
151 |
+
|
152 |
+
def forward(self, query, key, redraw=True):
|
153 |
+
if (not self.deterministic or self.training) and redraw is not False:
|
154 |
+
self.orthogonal_random_weights(query.device)
|
155 |
+
# generalized random fourier features
|
156 |
+
query = torch.matmul(query, self.weight)
|
157 |
+
key = torch.matmul(key, self.weight)
|
158 |
+
return self.kernel(query), self.kernel(key)
|
159 |
+
|
160 |
+
|
161 |
+
class MolformerSelfAttention(nn.Module):
|
162 |
+
def __init__(self, config):
|
163 |
+
super().__init__()
|
164 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
165 |
+
raise ValueError(
|
166 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
167 |
+
f"heads ({config.num_attention_heads})"
|
168 |
+
)
|
169 |
+
|
170 |
+
self.num_attention_heads = config.num_attention_heads
|
171 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
172 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
173 |
+
|
174 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
175 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
176 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
177 |
+
|
178 |
+
self.eps = config.linear_attention_eps
|
179 |
+
|
180 |
+
self.rotary_embeddings = MolformerRotaryEmbedding(
|
181 |
+
dim=self.attention_head_size, max_position_embeddings=config.max_position_embeddings
|
182 |
+
)
|
183 |
+
self.feature_map = MolformerFeatureMap(config)
|
184 |
+
|
185 |
+
self.is_decoder = config.is_decoder
|
186 |
+
|
187 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention.transpose_for_scores
|
188 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
189 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
190 |
+
x = x.view(new_x_shape)
|
191 |
+
return x.permute(0, 2, 1, 3)
|
192 |
+
|
193 |
+
def forward(
|
194 |
+
self,
|
195 |
+
hidden_states: torch.Tensor,
|
196 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
197 |
+
position_ids: Optional[torch.LongTensor] = None,
|
198 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
199 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
200 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
201 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
202 |
+
output_attentions: Optional[bool] = False,
|
203 |
+
use_cache: Optional[bool] = None,
|
204 |
+
) -> Tuple[torch.Tensor]:
|
205 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
206 |
+
|
207 |
+
# If this is instantiated as a cross-attention module, the keys
|
208 |
+
# and values come from an encoder; the attention mask needs to be
|
209 |
+
# such that the encoder's padding tokens are not attended to.
|
210 |
+
is_cross_attention = encoder_hidden_states is not None
|
211 |
+
|
212 |
+
if is_cross_attention and past_key_value is not None:
|
213 |
+
# reuse k,v, cross_attentions
|
214 |
+
key_layer = past_key_value[0]
|
215 |
+
value_layer = past_key_value[1]
|
216 |
+
attention_mask = encoder_attention_mask
|
217 |
+
elif is_cross_attention:
|
218 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
219 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
220 |
+
# save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
221 |
+
# Further calls to cross_attention layer can then reuse all cross-attention key/value_states
|
222 |
+
past_key_value = (key_layer, value_layer)
|
223 |
+
attention_mask = encoder_attention_mask
|
224 |
+
else:
|
225 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
226 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
227 |
+
|
228 |
+
kv_seq_len = key_layer.shape[-2]
|
229 |
+
if past_key_value is not None:
|
230 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
231 |
+
|
232 |
+
cos, sin = self.rotary_embeddings(value_layer, seq_len=kv_seq_len)
|
233 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
234 |
+
# Apply the feature map to the queries and keys
|
235 |
+
query_layer, key_layer = self.feature_map(query_layer, key_layer, redraw=past_key_value is None)
|
236 |
+
|
237 |
+
if attention_mask is not None:
|
238 |
+
# since we don't use softmax, we need to reconvert this mask to 1/0
|
239 |
+
attention_mask = (attention_mask == 0).to(attention_mask.dtype)
|
240 |
+
# separate original mask from causal mask
|
241 |
+
per_query_attn = attention_mask[:, 0, -1]
|
242 |
+
if self.is_decoder and not is_cross_attention:
|
243 |
+
batch_size, _, seq_length, _ = key_layer.shape
|
244 |
+
per_query_extended = MolformerPreTrainedModel.create_extended_attention_mask_for_decoder(
|
245 |
+
(batch_size, seq_length), per_query_attn
|
246 |
+
)
|
247 |
+
else:
|
248 |
+
per_query_extended = per_query_attn[:, None, None, :]
|
249 |
+
if not torch.equal(attention_mask, per_query_extended):
|
250 |
+
raise ValueError(
|
251 |
+
"MolformerSelfAttention does not support arbitrary 3D attention. attention_mask must be 2D (i.e., [batch size, sequence length])"
|
252 |
+
)
|
253 |
+
|
254 |
+
key_layer = key_layer * per_query_attn[:, None, -key_layer.shape[2] :, None]
|
255 |
+
|
256 |
+
if self.is_decoder and not is_cross_attention:
|
257 |
+
# causal linear attention
|
258 |
+
if use_cache:
|
259 |
+
seq_length = key_layer.shape[2]
|
260 |
+
key_value_outer = torch.einsum("bhlr,bhld->bhlrd", key_layer, value_layer)
|
261 |
+
if seq_length > 1:
|
262 |
+
key_value_outer = key_value_outer.cumsum(dim=2)
|
263 |
+
key_layer = key_layer.cumsum(dim=2)
|
264 |
+
if past_key_value is not None:
|
265 |
+
key_layer = key_layer + past_key_value[0][:, :, [-1]]
|
266 |
+
key_value_outer = key_value_outer + past_key_value[1]
|
267 |
+
seq_length += past_key_value[0].shape[-2]
|
268 |
+
# NOTE: query and key/value length must match (i.e., square attention matrix)
|
269 |
+
context_layer = torch.einsum("bhlr,bhlrd->bhld", query_layer, key_value_outer)
|
270 |
+
# store running sum of key_layer, key_value_outer, and seq_length -- constant memory!
|
271 |
+
# further calls to uni-directional self-attention can sum previous decoder states with current states
|
272 |
+
past_key_value = (key_layer[:, :, [-1]].expand(-1, -1, seq_length, -1), key_value_outer[:, :, [-1]])
|
273 |
+
else:
|
274 |
+
try:
|
275 |
+
from fast_transformers.causal_product import causal_dot_product
|
276 |
+
context_layer = causal_dot_product(query_layer, key_layer, value_layer)
|
277 |
+
except ImportError as e:
|
278 |
+
logger.warning(f"{e}: Falling back to (slow) pytorch implementation.")
|
279 |
+
key_value_outer = torch.einsum("bhlr,bhld->bhlrd", key_layer, value_layer)
|
280 |
+
key_value_outer = key_value_outer.cumsum(dim=2)
|
281 |
+
context_layer = torch.einsum("bhlr,bhlrd->bhld", query_layer, key_value_outer)
|
282 |
+
key_layer = key_layer.cumsum(dim=2)
|
283 |
+
norm = torch.einsum("bhlr,bhlr->bhl", query_layer, key_layer).unsqueeze(-1).clamp(min=self.eps)
|
284 |
+
context_layer = context_layer / norm
|
285 |
+
else:
|
286 |
+
# linear attention
|
287 |
+
key_value = torch.matmul(key_layer.transpose(-1, -2), value_layer)
|
288 |
+
norm = torch.matmul(query_layer, key_layer.sum(dim=-2).unsqueeze(-1)).clamp(min=self.eps)
|
289 |
+
context_layer = torch.matmul(query_layer, key_value) / norm
|
290 |
+
|
291 |
+
if head_mask is not None:
|
292 |
+
context_layer = context_layer * head_mask
|
293 |
+
|
294 |
+
if output_attentions:
|
295 |
+
logger.warning(
|
296 |
+
"Outputting attentions in linear attention negates the efficiency gains! Only use for visualization/debugging."
|
297 |
+
)
|
298 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
299 |
+
if attention_mask is not None:
|
300 |
+
attention_scores = attention_scores * attention_mask
|
301 |
+
attention_probs = nn.functional.normalize(attention_scores, p=1, dim=-1, eps=self.eps)
|
302 |
+
if head_mask is not None:
|
303 |
+
attention_probs = attention_probs * head_mask
|
304 |
+
# recompute context_layer for grad
|
305 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
306 |
+
|
307 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
308 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
309 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
310 |
+
|
311 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
312 |
+
|
313 |
+
if self.is_decoder:
|
314 |
+
outputs = outputs + (past_key_value,)
|
315 |
+
return outputs
|
316 |
+
|
317 |
+
|
318 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
319 |
+
class MolformerSelfOutput(nn.Module):
|
320 |
+
def __init__(self, config):
|
321 |
+
super().__init__()
|
322 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
323 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
324 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
325 |
+
|
326 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
327 |
+
hidden_states = self.dense(hidden_states)
|
328 |
+
hidden_states = self.dropout(hidden_states)
|
329 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
330 |
+
return hidden_states
|
331 |
+
|
332 |
+
|
333 |
+
class MolformerAttention(nn.Module):
|
334 |
+
def __init__(self, config):
|
335 |
+
super().__init__()
|
336 |
+
self.self = MolformerSelfAttention(config)
|
337 |
+
self.output = MolformerSelfOutput(config)
|
338 |
+
self.pruned_heads = set()
|
339 |
+
|
340 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
|
341 |
+
def prune_heads(self, heads):
|
342 |
+
if len(heads) == 0:
|
343 |
+
return
|
344 |
+
heads, index = find_pruneable_heads_and_indices(
|
345 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
346 |
+
)
|
347 |
+
|
348 |
+
# Prune linear layers
|
349 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
350 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
351 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
352 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
353 |
+
|
354 |
+
# Update hyper params and store pruned heads
|
355 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
356 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
357 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
358 |
+
|
359 |
+
def forward(
|
360 |
+
self,
|
361 |
+
hidden_states: torch.Tensor,
|
362 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
363 |
+
position_ids: Optional[torch.LongTensor] = None,
|
364 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
365 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
366 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
367 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
368 |
+
output_attentions: Optional[bool] = False,
|
369 |
+
use_cache: Optional[bool] = None,
|
370 |
+
) -> Tuple[torch.Tensor]:
|
371 |
+
self_outputs = self.self(
|
372 |
+
hidden_states,
|
373 |
+
attention_mask,
|
374 |
+
position_ids,
|
375 |
+
head_mask,
|
376 |
+
encoder_hidden_states,
|
377 |
+
encoder_attention_mask,
|
378 |
+
past_key_value,
|
379 |
+
output_attentions,
|
380 |
+
use_cache,
|
381 |
+
)
|
382 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
383 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
384 |
+
return outputs
|
385 |
+
|
386 |
+
|
387 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
388 |
+
class MolformerIntermediate(nn.Module):
|
389 |
+
def __init__(self, config):
|
390 |
+
super().__init__()
|
391 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
392 |
+
if isinstance(config.hidden_act, str):
|
393 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
394 |
+
else:
|
395 |
+
self.intermediate_act_fn = config.hidden_act
|
396 |
+
|
397 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
398 |
+
hidden_states = self.dense(hidden_states)
|
399 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
400 |
+
return hidden_states
|
401 |
+
|
402 |
+
|
403 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
404 |
+
class MolformerOutput(nn.Module):
|
405 |
+
def __init__(self, config):
|
406 |
+
super().__init__()
|
407 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
408 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
409 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
410 |
+
|
411 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
412 |
+
hidden_states = self.dense(hidden_states)
|
413 |
+
hidden_states = self.dropout(hidden_states)
|
414 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
415 |
+
return hidden_states
|
416 |
+
|
417 |
+
|
418 |
+
class MolformerLayer(nn.Module):
|
419 |
+
def __init__(self, config):
|
420 |
+
super().__init__()
|
421 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
422 |
+
self.seq_len_dim = 1
|
423 |
+
self.attention = MolformerAttention(config)
|
424 |
+
self.is_decoder = config.is_decoder
|
425 |
+
self.add_cross_attention = config.add_cross_attention
|
426 |
+
if self.add_cross_attention:
|
427 |
+
if not self.is_decoder:
|
428 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
429 |
+
self.crossattention = MolformerAttention(config)
|
430 |
+
self.intermediate = MolformerIntermediate(config)
|
431 |
+
self.output = MolformerOutput(config)
|
432 |
+
|
433 |
+
def forward(
|
434 |
+
self,
|
435 |
+
hidden_states: torch.Tensor,
|
436 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
437 |
+
position_ids: Optional[torch.LongTensor] = None,
|
438 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
439 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
440 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
441 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
442 |
+
output_attentions: Optional[bool] = False,
|
443 |
+
use_cache: Optional[bool] = None,
|
444 |
+
) -> Tuple[torch.Tensor]:
|
445 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
446 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
447 |
+
self_attention_outputs = self.attention(
|
448 |
+
hidden_states,
|
449 |
+
attention_mask,
|
450 |
+
position_ids,
|
451 |
+
head_mask,
|
452 |
+
output_attentions=output_attentions,
|
453 |
+
past_key_value=self_attn_past_key_value,
|
454 |
+
use_cache=use_cache,
|
455 |
+
)
|
456 |
+
attention_output = self_attention_outputs[0]
|
457 |
+
|
458 |
+
# if decoder, the last output is tuple of self-attn cache
|
459 |
+
if self.is_decoder:
|
460 |
+
outputs = self_attention_outputs[1:-1]
|
461 |
+
present_key_value = self_attention_outputs[-1]
|
462 |
+
else:
|
463 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
464 |
+
|
465 |
+
cross_attn_present_key_value = None
|
466 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
467 |
+
if not hasattr(self, "crossattention"):
|
468 |
+
raise ValueError(
|
469 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
470 |
+
" by setting `config.add_cross_attention=True`"
|
471 |
+
)
|
472 |
+
|
473 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
474 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
475 |
+
cross_attention_outputs = self.crossattention(
|
476 |
+
attention_output,
|
477 |
+
attention_mask,
|
478 |
+
position_ids,
|
479 |
+
head_mask,
|
480 |
+
encoder_hidden_states,
|
481 |
+
encoder_attention_mask,
|
482 |
+
cross_attn_past_key_value,
|
483 |
+
output_attentions,
|
484 |
+
use_cache,
|
485 |
+
)
|
486 |
+
attention_output = cross_attention_outputs[0]
|
487 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
488 |
+
|
489 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
490 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
491 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
492 |
+
|
493 |
+
layer_output = apply_chunking_to_forward(
|
494 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
495 |
+
)
|
496 |
+
outputs = (layer_output,) + outputs
|
497 |
+
|
498 |
+
# if decoder, return the attn key/values as the last output
|
499 |
+
if self.is_decoder:
|
500 |
+
outputs = outputs + (present_key_value,)
|
501 |
+
|
502 |
+
return outputs
|
503 |
+
|
504 |
+
def feed_forward_chunk(self, attention_output):
|
505 |
+
intermediate_output = self.intermediate(attention_output)
|
506 |
+
layer_output = self.output(intermediate_output, attention_output)
|
507 |
+
return layer_output
|
508 |
+
|
509 |
+
|
510 |
+
class MolformerEncoder(nn.Module):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__()
|
513 |
+
self.config = config
|
514 |
+
self.layer = nn.ModuleList([MolformerLayer(config) for _ in range(config.num_hidden_layers)])
|
515 |
+
self.gradient_checkpointing = False
|
516 |
+
|
517 |
+
def forward(
|
518 |
+
self,
|
519 |
+
hidden_states: torch.Tensor,
|
520 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
521 |
+
position_ids: Optional[torch.LongTensor] = None,
|
522 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
523 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
524 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
525 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
526 |
+
use_cache: Optional[bool] = None,
|
527 |
+
output_attentions: Optional[bool] = False,
|
528 |
+
output_hidden_states: Optional[bool] = False,
|
529 |
+
return_dict: Optional[bool] = True,
|
530 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
531 |
+
all_hidden_states = () if output_hidden_states else None
|
532 |
+
all_self_attentions = () if output_attentions else None
|
533 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
534 |
+
|
535 |
+
if self.gradient_checkpointing and self.training:
|
536 |
+
if use_cache:
|
537 |
+
logger.warning_once(
|
538 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
539 |
+
)
|
540 |
+
use_cache = False
|
541 |
+
|
542 |
+
next_decoder_cache = () if use_cache else None
|
543 |
+
for i, layer_module in enumerate(self.layer):
|
544 |
+
if output_hidden_states:
|
545 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
546 |
+
|
547 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
548 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
549 |
+
|
550 |
+
if self.gradient_checkpointing and self.training:
|
551 |
+
|
552 |
+
def create_custom_forward(module):
|
553 |
+
def custom_forward(*inputs):
|
554 |
+
return module(*inputs, past_key_value, output_attentions)
|
555 |
+
|
556 |
+
return custom_forward
|
557 |
+
|
558 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
559 |
+
create_custom_forward(layer_module),
|
560 |
+
hidden_states,
|
561 |
+
attention_mask,
|
562 |
+
position_ids,
|
563 |
+
layer_head_mask,
|
564 |
+
encoder_hidden_states,
|
565 |
+
encoder_attention_mask,
|
566 |
+
)
|
567 |
+
else:
|
568 |
+
layer_outputs = layer_module(
|
569 |
+
hidden_states,
|
570 |
+
attention_mask,
|
571 |
+
position_ids,
|
572 |
+
layer_head_mask,
|
573 |
+
encoder_hidden_states,
|
574 |
+
encoder_attention_mask,
|
575 |
+
past_key_value,
|
576 |
+
output_attentions,
|
577 |
+
use_cache,
|
578 |
+
)
|
579 |
+
|
580 |
+
hidden_states = layer_outputs[0]
|
581 |
+
if use_cache:
|
582 |
+
next_decoder_cache += (layer_outputs[-1],)
|
583 |
+
if output_attentions:
|
584 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
585 |
+
if self.config.add_cross_attention:
|
586 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
587 |
+
|
588 |
+
if output_hidden_states:
|
589 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
590 |
+
|
591 |
+
if not return_dict:
|
592 |
+
return tuple(
|
593 |
+
v
|
594 |
+
for v in [
|
595 |
+
hidden_states,
|
596 |
+
next_decoder_cache,
|
597 |
+
all_hidden_states,
|
598 |
+
all_self_attentions,
|
599 |
+
all_cross_attentions,
|
600 |
+
]
|
601 |
+
if v is not None
|
602 |
+
)
|
603 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
604 |
+
last_hidden_state=hidden_states,
|
605 |
+
past_key_values=next_decoder_cache,
|
606 |
+
hidden_states=all_hidden_states,
|
607 |
+
attentions=all_self_attentions,
|
608 |
+
cross_attentions=all_cross_attentions,
|
609 |
+
)
|
610 |
+
|
611 |
+
|
612 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform
|
613 |
+
class MolformerPredictionHeadTransform(nn.Module):
|
614 |
+
def __init__(self, config):
|
615 |
+
super().__init__()
|
616 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
617 |
+
if isinstance(config.hidden_act, str):
|
618 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
619 |
+
else:
|
620 |
+
self.transform_act_fn = config.hidden_act
|
621 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
622 |
+
|
623 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
624 |
+
hidden_states = self.dense(hidden_states)
|
625 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
626 |
+
hidden_states = self.LayerNorm(hidden_states)
|
627 |
+
return hidden_states
|
628 |
+
|
629 |
+
|
630 |
+
class MolformerLMPredictionHead(nn.Module):
|
631 |
+
def __init__(self, config):
|
632 |
+
super().__init__()
|
633 |
+
self.transform = MolformerPredictionHeadTransform(config)
|
634 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
635 |
+
|
636 |
+
def forward(self, hidden_states):
|
637 |
+
hidden_states = self.transform(hidden_states)
|
638 |
+
hidden_states = self.decoder(hidden_states)
|
639 |
+
return hidden_states
|
640 |
+
|
641 |
+
|
642 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->Molformer,roberta->molformer
|
643 |
+
class MolformerPreTrainedModel(PreTrainedModel):
|
644 |
+
"""
|
645 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
646 |
+
models.
|
647 |
+
"""
|
648 |
+
|
649 |
+
config_class = MolformerConfig
|
650 |
+
base_model_prefix = "molformer"
|
651 |
+
supports_gradient_checkpointing = True
|
652 |
+
_no_split_modules = ["MolformerEmbeddings", "MolformerSelfAttention"]
|
653 |
+
|
654 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
655 |
+
def _init_weights(self, module):
|
656 |
+
"""Initialize the weights"""
|
657 |
+
if isinstance(module, nn.Linear):
|
658 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
659 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
660 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
661 |
+
if module.bias is not None:
|
662 |
+
module.bias.data.zero_()
|
663 |
+
elif isinstance(module, nn.Embedding):
|
664 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
665 |
+
if module.padding_idx is not None:
|
666 |
+
module.weight.data[module.padding_idx].zero_()
|
667 |
+
elif isinstance(module, nn.LayerNorm):
|
668 |
+
module.bias.data.zero_()
|
669 |
+
module.weight.data.fill_(1.0)
|
670 |
+
|
671 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
672 |
+
if isinstance(module, MolformerEncoder):
|
673 |
+
module.gradient_checkpointing = value
|
674 |
+
|
675 |
+
|
676 |
+
def masked_avg_pool1d(hidden_states, attention_mask, eps=1e-9):
|
677 |
+
attention_mask = attention_mask.unsqueeze(-1).expand_as(hidden_states).float()
|
678 |
+
sum_embeddings = torch.sum(hidden_states * attention_mask, dim=1)
|
679 |
+
sum_mask = torch.clamp(attention_mask.sum(dim=1), min=eps)
|
680 |
+
embedding = sum_embeddings / sum_mask
|
681 |
+
return embedding
|
682 |
+
|
683 |
+
|
684 |
+
MOLFORMER_START_DOCSTRING = r"""
|
685 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
686 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
687 |
+
behavior.
|
688 |
+
|
689 |
+
Parameters:
|
690 |
+
config ([`MolformerConfig`]): Model configuration class with all the parameters of the model.
|
691 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
692 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
693 |
+
"""
|
694 |
+
|
695 |
+
MOLFORMER_INPUTS_DOCSTRING = r"""
|
696 |
+
Args:
|
697 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
698 |
+
Indices of input sequence tokens in the vocabulary.
|
699 |
+
|
700 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
701 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
702 |
+
|
703 |
+
[What are input IDs?](../glossary#input-ids)
|
704 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
705 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
706 |
+
|
707 |
+
- 1 for tokens that are **not masked**,
|
708 |
+
- 0 for tokens that are **masked**.
|
709 |
+
|
710 |
+
[What are attention masks?](../glossary#attention-mask)
|
711 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
712 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
713 |
+
config.n_positions - 1]`.
|
714 |
+
|
715 |
+
[What are position IDs?](../glossary#position-ids)
|
716 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
717 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
718 |
+
|
719 |
+
- 1 indicates the head is **not masked**,
|
720 |
+
- 0 indicates the head is **masked**.
|
721 |
+
|
722 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
723 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
724 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
725 |
+
model's internal embedding lookup matrix.
|
726 |
+
output_attentions (`bool`, *optional*):
|
727 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
728 |
+
tensors for more detail.
|
729 |
+
output_hidden_states (`bool`, *optional*):
|
730 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
731 |
+
more detail.
|
732 |
+
return_dict (`bool`, *optional*):
|
733 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
734 |
+
"""
|
735 |
+
|
736 |
+
|
737 |
+
@add_start_docstrings(
|
738 |
+
"The bare Molformer Model transformer outputting raw hidden-states without any specific head on top.",
|
739 |
+
MOLFORMER_START_DOCSTRING,
|
740 |
+
)
|
741 |
+
class MolformerModel(MolformerPreTrainedModel):
|
742 |
+
"""
|
743 |
+
|
744 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
745 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
746 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
747 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
748 |
+
|
749 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
750 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
751 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
752 |
+
"""
|
753 |
+
|
754 |
+
def __init__(self, config, add_pooling_layer=True):
|
755 |
+
super().__init__(config)
|
756 |
+
self.config = config
|
757 |
+
|
758 |
+
self.embeddings = MolformerEmbeddings(config)
|
759 |
+
self.encoder = MolformerEncoder(config)
|
760 |
+
|
761 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
762 |
+
self.pooler = masked_avg_pool1d if add_pooling_layer else None
|
763 |
+
|
764 |
+
# Initialize weights and apply final processing
|
765 |
+
self.post_init()
|
766 |
+
|
767 |
+
def get_input_embeddings(self):
|
768 |
+
return self.embeddings.word_embeddings
|
769 |
+
|
770 |
+
def set_input_embeddings(self, value):
|
771 |
+
self.embeddings.word_embeddings = value
|
772 |
+
|
773 |
+
def _prune_heads(self, heads_to_prune):
|
774 |
+
"""
|
775 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
776 |
+
class PreTrainedModel
|
777 |
+
"""
|
778 |
+
for layer, heads in heads_to_prune.items():
|
779 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
780 |
+
|
781 |
+
@add_start_docstrings_to_model_forward(MOLFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
782 |
+
@add_code_sample_docstrings(
|
783 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
784 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
785 |
+
config_class=_CONFIG_FOR_DOC,
|
786 |
+
)
|
787 |
+
def forward(
|
788 |
+
self,
|
789 |
+
input_ids: Optional[torch.LongTensor] = None,
|
790 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
791 |
+
position_ids: Optional[torch.LongTensor] = None,
|
792 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
793 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
794 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
795 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
796 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
797 |
+
use_cache: Optional[bool] = None,
|
798 |
+
output_attentions: Optional[bool] = None,
|
799 |
+
output_hidden_states: Optional[bool] = None,
|
800 |
+
return_dict: Optional[bool] = None,
|
801 |
+
) -> Union[BaseModelOutputWithPoolingAndCrossAttentions, Tuple[torch.Tensor]]:
|
802 |
+
r"""
|
803 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
804 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
805 |
+
the model is configured as a decoder.
|
806 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
807 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
808 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
809 |
+
|
810 |
+
- 1 for tokens that are **not masked**,
|
811 |
+
- 0 for tokens that are **masked**.
|
812 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
813 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
814 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
815 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
816 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
817 |
+
use_cache (`bool`, *optional*):
|
818 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
819 |
+
`past_key_values`).
|
820 |
+
"""
|
821 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
822 |
+
output_hidden_states = (
|
823 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
824 |
+
)
|
825 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
826 |
+
|
827 |
+
if self.config.is_decoder:
|
828 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
829 |
+
else:
|
830 |
+
use_cache = False
|
831 |
+
|
832 |
+
if input_ids is not None and inputs_embeds is not None:
|
833 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
834 |
+
elif input_ids is not None:
|
835 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
836 |
+
input_shape = input_ids.size()
|
837 |
+
elif inputs_embeds is not None:
|
838 |
+
input_shape = inputs_embeds.size()[:-1]
|
839 |
+
else:
|
840 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
841 |
+
|
842 |
+
batch_size, seq_length = input_shape
|
843 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
844 |
+
|
845 |
+
# past_key_values_length
|
846 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
847 |
+
|
848 |
+
if position_ids is None:
|
849 |
+
position_ids = torch.arange(
|
850 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
851 |
+
)
|
852 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
853 |
+
else:
|
854 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
855 |
+
|
856 |
+
if attention_mask is None:
|
857 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
858 |
+
|
859 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
860 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
861 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
862 |
+
|
863 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
864 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
865 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
866 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
867 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
868 |
+
if encoder_attention_mask is None:
|
869 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
870 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
871 |
+
else:
|
872 |
+
encoder_extended_attention_mask = None
|
873 |
+
|
874 |
+
# Prepare head mask if needed
|
875 |
+
# 1.0 in head_mask indicate we keep the head
|
876 |
+
# attention_probs has shape bsz x n_heads x N x N
|
877 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
878 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
879 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
880 |
+
|
881 |
+
embedding_output = self.embeddings(input_ids=input_ids, inputs_embeds=inputs_embeds)
|
882 |
+
|
883 |
+
encoder_outputs = self.encoder(
|
884 |
+
embedding_output,
|
885 |
+
attention_mask=extended_attention_mask,
|
886 |
+
position_ids=position_ids,
|
887 |
+
head_mask=head_mask,
|
888 |
+
encoder_hidden_states=encoder_hidden_states,
|
889 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
890 |
+
past_key_values=past_key_values,
|
891 |
+
use_cache=use_cache,
|
892 |
+
output_attentions=output_attentions,
|
893 |
+
output_hidden_states=output_hidden_states,
|
894 |
+
return_dict=return_dict,
|
895 |
+
)
|
896 |
+
sequence_output = encoder_outputs[0]
|
897 |
+
sequence_output = self.LayerNorm(sequence_output)
|
898 |
+
pooled_output = self.pooler(sequence_output, attention_mask) if self.pooler is not None else None
|
899 |
+
|
900 |
+
if not return_dict:
|
901 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
902 |
+
|
903 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
904 |
+
last_hidden_state=sequence_output,
|
905 |
+
pooler_output=pooled_output,
|
906 |
+
past_key_values=encoder_outputs.past_key_values,
|
907 |
+
hidden_states=encoder_outputs.hidden_states,
|
908 |
+
attentions=encoder_outputs.attentions,
|
909 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
910 |
+
)
|
911 |
+
|
912 |
+
|
913 |
+
@add_start_docstrings(
|
914 |
+
"""Molformer Model with a `language modeling` head on top for CLM fine-tuning.""", MOLFORMER_START_DOCSTRING
|
915 |
+
)
|
916 |
+
class MolformerForCausalLM(MolformerPreTrainedModel):
|
917 |
+
_tied_weights_keys = ["lm_head.decoder.weight"]
|
918 |
+
|
919 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForCausalLM.__init__ with Roberta->Molformer,roberta->molformer,LMHeadModel->ForCausalLM,LMHead->LMPredictionHead
|
920 |
+
def __init__(self, config):
|
921 |
+
super().__init__(config)
|
922 |
+
|
923 |
+
if not config.is_decoder:
|
924 |
+
logger.warning("If you want to use `MolformerForCausalLM` as a standalone, add `is_decoder=True.`")
|
925 |
+
|
926 |
+
self.molformer = MolformerModel(config, add_pooling_layer=False)
|
927 |
+
self.lm_head = MolformerLMPredictionHead(config)
|
928 |
+
|
929 |
+
# Initialize weights and apply final processing
|
930 |
+
self.post_init()
|
931 |
+
|
932 |
+
def get_output_embeddings(self):
|
933 |
+
return self.lm_head.decoder
|
934 |
+
|
935 |
+
def set_output_embeddings(self, new_embeddings):
|
936 |
+
self.lm_head.decoder = new_embeddings
|
937 |
+
|
938 |
+
@add_start_docstrings_to_model_forward(MOLFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
939 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
940 |
+
def forward(
|
941 |
+
self,
|
942 |
+
input_ids: Optional[torch.LongTensor] = None,
|
943 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
944 |
+
position_ids: Optional[torch.LongTensor] = None,
|
945 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
946 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
947 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
948 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
949 |
+
labels: Optional[torch.LongTensor] = None,
|
950 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
951 |
+
use_cache: Optional[bool] = None,
|
952 |
+
output_attentions: Optional[bool] = None,
|
953 |
+
output_hidden_states: Optional[bool] = None,
|
954 |
+
return_dict: Optional[bool] = None,
|
955 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
956 |
+
r"""
|
957 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
958 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
959 |
+
the model is configured as a decoder.
|
960 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
961 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
962 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
963 |
+
|
964 |
+
- 1 for tokens that are **not masked**,
|
965 |
+
- 0 for tokens that are **masked**.
|
966 |
+
|
967 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
968 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
969 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
970 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
971 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
972 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
973 |
+
|
974 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
975 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
976 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
977 |
+
use_cache (`bool`, *optional*):
|
978 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
979 |
+
`past_key_values`).
|
980 |
+
|
981 |
+
Returns:
|
982 |
+
"""
|
983 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
984 |
+
if labels is not None:
|
985 |
+
use_cache = False
|
986 |
+
|
987 |
+
outputs = self.molformer(
|
988 |
+
input_ids,
|
989 |
+
attention_mask=attention_mask,
|
990 |
+
position_ids=position_ids,
|
991 |
+
head_mask=head_mask,
|
992 |
+
inputs_embeds=inputs_embeds,
|
993 |
+
encoder_hidden_states=encoder_hidden_states,
|
994 |
+
encoder_attention_mask=encoder_attention_mask,
|
995 |
+
past_key_values=past_key_values,
|
996 |
+
use_cache=use_cache,
|
997 |
+
output_attentions=output_attentions,
|
998 |
+
output_hidden_states=output_hidden_states,
|
999 |
+
return_dict=return_dict,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
sequence_output = outputs[0]
|
1003 |
+
prediction_scores = self.lm_head(sequence_output)
|
1004 |
+
|
1005 |
+
lm_loss = None
|
1006 |
+
if labels is not None:
|
1007 |
+
# move labels to correct device to enable model parallelism
|
1008 |
+
labels = labels.to(prediction_scores.device)
|
1009 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1010 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1011 |
+
labels = labels[:, 1:].contiguous()
|
1012 |
+
loss_fct = CrossEntropyLoss()
|
1013 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1014 |
+
|
1015 |
+
if not return_dict:
|
1016 |
+
output = (prediction_scores,) + outputs[2:]
|
1017 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1018 |
+
|
1019 |
+
return CausalLMOutputWithCrossAttentions(
|
1020 |
+
loss=lm_loss,
|
1021 |
+
logits=prediction_scores,
|
1022 |
+
past_key_values=outputs.past_key_values,
|
1023 |
+
hidden_states=outputs.hidden_states,
|
1024 |
+
attentions=outputs.attentions,
|
1025 |
+
cross_attentions=outputs.cross_attentions,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
1029 |
+
def prepare_inputs_for_generation(
|
1030 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1031 |
+
):
|
1032 |
+
if past_key_values is not None:
|
1033 |
+
past_length = past_key_values[0][0].shape[2]
|
1034 |
+
|
1035 |
+
# Some generation methods already pass only the last input ID
|
1036 |
+
if input_ids.shape[1] > past_length:
|
1037 |
+
remove_prefix_length = past_length
|
1038 |
+
else:
|
1039 |
+
# Default to old behavior: keep only final ID
|
1040 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1041 |
+
|
1042 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1043 |
+
|
1044 |
+
position_ids = kwargs.get("position_ids", None)
|
1045 |
+
if attention_mask is not None and position_ids is None:
|
1046 |
+
# create position_ids on the fly for batch generation
|
1047 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1048 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1049 |
+
if past_key_values:
|
1050 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1051 |
+
|
1052 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1053 |
+
if inputs_embeds is not None and past_key_values is None:
|
1054 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1055 |
+
else:
|
1056 |
+
model_inputs = {"input_ids": input_ids}
|
1057 |
+
|
1058 |
+
model_inputs.update(
|
1059 |
+
{
|
1060 |
+
"position_ids": position_ids,
|
1061 |
+
"past_key_values": past_key_values,
|
1062 |
+
"use_cache": kwargs.get("use_cache"),
|
1063 |
+
"attention_mask": attention_mask,
|
1064 |
+
}
|
1065 |
+
)
|
1066 |
+
return model_inputs
|
1067 |
+
|
1068 |
+
# Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache
|
1069 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1070 |
+
reordered_past = ()
|
1071 |
+
for layer_past in past_key_values:
|
1072 |
+
reordered_past += (
|
1073 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1074 |
+
)
|
1075 |
+
return reordered_past
|