precious3-gpt-multi-modal / precious3_gpt_multi_modal.py
stefan-insilico's picture
Replaced next-token-generation with top-k-generation for signatures generation
91696a4 verified
raw
history blame contribute delete
23.9 kB
from typing import Optional, Tuple, Union, List
import logging
import math
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedTokenizerFast
from transformers.modeling_outputs import (
CausalLMOutputWithCrossAttentions,
CausalLMOutputWithPast,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPast,
)
from mpt_7b.modeling_mpt import MPTModel, MPTForCausalLM, gen_attention_mask_in_length
from mpt_7b.configuration_mpt import MPTConfig
from mpt_7b.blocks import MPTBlock
from mpt_7b.norm import NORM_CLASS_REGISTRY
from mpt_7b.custom_embedding import SharedEmbedding
from mpt_7b.attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
log = logging.getLogger(__name__)
class Custom_MptModel(MPTModel):
"""
Custom MPT Model that extends the base MPTModel with additional functionalities
for handling multimodal embeddings and custom projections.
Args:
config (MPTConfig): Configuration object containing model parameters.
modality0_dim (int): Dimension for the first modality embedding.
modality2_dim (int): Dimension for the second modality embedding.
"""
def __init__(self, config: MPTConfig, modality0_dim: int = 128, modality2_dim: int = 1536):
config._validate_config()
super().__init__(config)
# Initialize model parameters based on the configuration
self.attn_impl = config.attn_config['attn_impl']
self.prefix_lm = config.attn_config['prefix_lm']
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
self.alibi = config.attn_config['alibi']
self.alibi_bias_max = config.attn_config['alibi_bias_max']
self.learned_pos_emb = config.learned_pos_emb
# Set initialization device
if config.init_device == 'mixed':
if dist.get_local_rank() == 0:
config.init_device = 'cpu'
else:
config.init_device = 'meta'
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
self.embedding_fraction = config.embedding_fraction
# Initialize embeddings
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
if self.learned_pos_emb:
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
self.emb_drop = nn.Dropout(config.emb_pdrop)
# Initialize model blocks
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
self.norm_f = norm_class(config.d_model, device=config.init_device)
# Freeze all parameters except the projection layer
for param in self.wte.parameters():
param.requires_grad = False
for param in self.blocks.parameters():
param.requires_grad = False
# Initialize projections for different modalities
self.modality0_embedding_projection = self._create_modal_projection(modality0_dim)
self.modality2_embedding_projection = self._create_modal_projection(modality2_dim)
# Other configurations
self.rope = config.attn_config['rope']
self.rope_impl = None
if self.rope:
self.rope_impl = config.attn_config['rope_impl']
self.rotary_embedding = gen_rotary_embedding(
rope_head_dim=config.d_model // config.n_heads,
rope_impl=self.rope_impl,
rope_theta=config.attn_config['rope_theta'],
rope_dail_config=config.attn_config['rope_dail_config'],
rope_hf_config=config.attn_config['rope_hf_config'],
max_seq_len=self.config.max_seq_len
)
self.is_causal = not self.prefix_lm
self._attn_bias_initialized = False
self.attn_bias = None
self.attn_bias_shape = attn_bias_shape(
self.attn_impl,
config.n_heads,
config.max_seq_len,
self.alibi,
prefix_lm=self.prefix_lm,
causal=self.is_causal,
use_sequence_id=self.attn_uses_sequence_id
)
if config.no_bias:
for module in self.modules():
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
log.info(f'Removing bias from module={module!r}.')
module.register_parameter('bias', None)
if hasattr(module, 'use_bias'):
log.info(f'Setting use_bias=False for module={module!r}.')
module.use_bias = False
log.debug(self)
log.debug(f"Using {self.config.init_config['name']} initialization.")
def _create_modal_projection(self, modality_dim: int) -> nn.ModuleList:
"""
Create a projection layer for a given modality.
Args:
modality_dim (int): Dimension of the modality embedding.
Returns:
nn.ModuleList: A module list containing layers for modal projection.
"""
return nn.ModuleList([
nn.Linear(modality_dim, self.config.d_model),
nn.ReLU(),
nn.Linear(self.config.d_model, self.config.d_model),
nn.ReLU(),
nn.Linear(self.config.d_model, self.config.d_model)
])
def get_input_embeddings(self) -> nn.Embedding:
"""
Get the input word embeddings.
Returns:
nn.Embedding: The word token embeddings.
"""
return self.wte
def set_input_embeddings(self, new_embeddings: nn.Parameter):
"""
Set the input word embeddings with new embeddings.
Args:
new_embeddings (nn.Parameter): The new word embeddings to set.
"""
self.wte.weight = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
inputs_embeds: Optional[torch.Tensor] = None,
modality0_emb: Optional[bool] = None,
modality0_token_id: Optional[bool] = None,
modality1_emb: Optional[bool] = None,
modality1_token_id: Optional[bool] = None,
modality2_emb: Optional[bool] = None,
modality2_token_id: Optional[bool] = None,
modality3_emb: Optional[bool] = None,
modality3_token_id: Optional[bool] = None
) -> BaseModelOutputWithPast:
"""
Forward pass for the model, processing input through the network.
Args:
input_ids (Optional[torch.LongTensor]): Input tensor representing token IDs.
past_key_values (Optional[List[Tuple[torch.FloatTensor]]]): Past key values for cache.
attention_mask (Optional[torch.ByteTensor]): Attention mask to avoid attention to padding tokens.
prefix_mask (Optional[torch.ByteTensor]): Mask for the prefix input.
sequence_id (Optional[torch.LongTensor]): Sequence ID for token sequences.
return_dict (Optional[bool]): Whether to return a dict or a tuple.
output_attentions (Optional[bool]): Whether to output attention weights.
output_hidden_states (Optional[bool]): Whether to output hidden states.
use_cache (Optional[bool]): Whether to cache past key values.
inputs_embeds (Optional[torch.Tensor]): Input tensor representing embeddings.
modality0_emb (Optional[bool]): Modality 0 (KG UP genes) embedding.
modality0_token_id (Optional[bool]): Token ID for modality 0.
modality1_emb (Optional[bool]): Modality 1 (KG DOWN genes) embedding.
modality1_token_id (Optional[bool]): Token ID for modality 1.
modality2_emb (Optional[bool]): Modality 2 (TEXT UP genes) embedding.
modality2_token_id (Optional[bool]): Token ID for modality 2.
modality3_emb (Optional[bool]): Modality 3 (TEXT DOWN genes) embedding.
modality3_token_id (Optional[bool]): Token ID for modality 3.
Returns:
BaseModelOutputWithPast: Model output containing last hidden state and optional details.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if attention_mask is not None:
attention_mask = attention_mask.bool()
if prefix_mask is not None:
prefix_mask = prefix_mask.bool()
if not return_dict:
raise NotImplementedError('return_dict False is not implemented yet for MPT')
if output_attentions:
if self.attn_impl != 'torch':
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
raise NotImplementedError('MPT does not support training with left padding.')
if self.prefix_lm and prefix_mask is None:
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
if self.training:
if self.attn_uses_sequence_id and sequence_id is None:
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
elif self.attn_uses_sequence_id is False and sequence_id is not None:
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
# Process modality embeddings for each modality
self._process_modalities(modality0_emb, modality0_token_id, self.modality0_embedding_projection)
self._process_modalities(modality1_emb, modality1_token_id, self.modality0_embedding_projection)
self._process_modalities(modality2_emb, modality2_token_id, self.modality2_embedding_projection)
self._process_modalities(modality3_emb, modality3_token_id, self.modality2_embedding_projection)
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds.')
elif input_ids is not None:
bsz = input_ids.size(0)
S = input_ids.size(1)
x = self.wte(input_ids)
input_device = input_ids.device
elif inputs_embeds is not None:
bsz = inputs_embeds.size(0)
S = inputs_embeds.size(1)
x = inputs_embeds
input_device = inputs_embeds.device
else:
raise ValueError('You must specify input_ids or inputs_embeds')
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
rotary_emb_w_meta_info = None
past_position = 0
if past_key_values is not None:
if len(past_key_values) != self.config.n_layers:
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
past_position = past_key_values[0][0].size(1)
if self.attn_impl == 'torch':
past_position = past_key_values[0][0].size(3)
if self.learned_pos_emb or self.rope:
if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
if attention_mask is not None:
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
if self.learned_pos_emb:
x = x + self.wpe(pos)
elif self.rope and self.rope_impl == 'hf':
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
elif self.rope and self.rope_impl == 'dail':
rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
# Handle embedding fraction
if self.embedding_fraction == 1:
x = self.emb_drop(x)
else:
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
assert isinstance(self.emb_drop, nn.Module)
x = self.emb_drop(x_shrunk)
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S,
attn_uses_sequence_id=self.attn_uses_sequence_id,
attn_impl=self.attn_impl,
attention_mask=attention_mask)
alibi_slopes = None
if self.alibi and self.attn_impl == 'flash':
alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
presents = () if use_cache else None
if use_cache and past_key_values is None:
past_key_values = [() for _ in range(self.config.n_layers)]
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
flash_attn_padding_info = {}
if self.attn_impl == 'flash':
flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
for (b_idx, block) in enumerate(self.blocks):
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states = all_hidden_states + (x,)
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
(x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
if presents is not None:
presents += (present,)
if output_attentions:
assert all_self_attns is not None
all_self_attns = all_self_attns + (attn_weights,)
x = self.norm_f(x)
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states = all_hidden_states + (x,)
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
def _process_modalities(self, modality_emb: Optional[bool], token_id: Optional[bool], projection: nn.ModuleList):
"""
Process the modality embedding if provided, updating the input embeddings.
Args:
modality_emb (Optional[bool]): The modality embedding to process.
token_id (Optional[bool]): The token ID for the modality.
projection (nn.ModuleList): The projection layers for the modality.
"""
if modality_emb is not None:
modality_emb = torch.tensor(modality_emb, dtype=torch.bfloat16)
hidden_states = self.wte.weight.detach()
for layer in projection:
modality_emb = layer(modality_emb)
proj_modality_emb = modality_emb
hidden_states[token_id, :] = torch.mean(torch.squeeze(proj_modality_emb, 1), dim=0)
self.set_input_embeddings(torch.nn.Parameter(hidden_states))
class Precious3MPTForCausalLM(MPTForCausalLM):
"""
Precious3 MPT For Causal Language Modeling that utilizes the Custom_MptModel.
Args:
config (MPTConfig): Configuration object for the model.
modality0_dim (int): Dimension for the first modality embedding.
modality2_dim (int): Dimension for the second modality embedding.
"""
def __init__(self, config: MPTConfig, modality0_dim: int = 128, modality2_dim: int = 1536):
super().__init__(config)
# Pass the modalities dimensions to Custom_MptModel
self.transformer: MPTModel = Custom_MptModel(config, modality0_dim=modality0_dim, modality2_dim=modality2_dim)
self.lm_head = None
if not config.tie_word_embeddings:
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
self.lm_head._fsdp_wrap = True
for child in self.transformer.children():
if isinstance(child, torch.nn.ModuleList):
continue
if isinstance(child, torch.nn.Module):
child._fsdp_wrap = True
self.logit_scale = None
if config.logit_scale is not None:
logit_scale = config.logit_scale
if isinstance(logit_scale, str):
if logit_scale == 'inv_sqrt_d_model':
logit_scale = 1 / math.sqrt(config.d_model)
else:
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
self.logit_scale = logit_scale
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
attention_mask: Optional[torch.ByteTensor] = None,
prefix_mask: Optional[torch.ByteTensor] = None,
sequence_id: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
modality0_emb: Optional[bool] = None,
modality0_token_id: Optional[bool] = None,
modality1_emb: Optional[bool] = None,
modality1_token_id: Optional[bool] = None,
modality2_emb: Optional[bool] = None,
modality2_token_id: Optional[bool] = None,
modality3_emb: Optional[bool] = None,
modality3_token_id: Optional[bool] = None
) -> CausalLMOutputWithPast:
"""
Forward pass through the causal language model.
Args:
input_ids (Optional[torch.LongTensor]): Input tensor for token IDs.
past_key_values (Optional[List[Tuple[torch.FloatTensor]]]): Past key values for cached states.
attention_mask (Optional[torch.ByteTensor]): Attention mask to prevent attention to padding tokens.
prefix_mask (Optional[torch.ByteTensor]): Mask for prefix inputs.
sequence_id (Optional[torch.LongTensor]): Sequence ID tensor.
labels (Optional[torch.LongTensor]): Labels for the loss computation, if applicable.
return_dict (Optional[bool]): Whether to return outputs as a dict or tuple.
output_attentions (Optional[bool]): Whether to return attention weights.
output_hidden_states (Optional[bool]): Whether to return hidden states.
use_cache (Optional[bool]): Whether to cache past key values.
inputs_embeds (Optional[torch.FloatTensor]): Input tensor for embeddings.
modality0_emb (Optional[bool]): Input for modality 0.
modality0_token_id (Optional[bool]): Token ID for modality 0.
modality1_emb (Optional[bool]): Input for modality 1.
modality1_token_id (Optional[bool]): Token ID for modality 1.
modality2_emb (Optional[bool]): Input for modality 2.
modality2_token_id (Optional[bool]): Token ID for modality 2.
modality3_emb (Optional[bool]): Input for modality 3.
modality3_token_id (Optional[bool]): Token ID for modality 3.
Returns:
CausalLMOutputWithPast: Causal language model output containing logits and past key values.
"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
outputs = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
prefix_mask=prefix_mask,
sequence_id=sequence_id,
return_dict=return_dict,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
modality0_emb=modality0_emb,
modality0_token_id=modality0_token_id,
modality1_emb=modality1_emb,
modality1_token_id=modality1_token_id,
modality2_emb=modality2_emb,
modality2_token_id=modality2_token_id,
modality3_emb=modality3_emb,
modality3_token_id=modality3_token_id
)
if self.lm_head is not None:
logits = self.lm_head(outputs.last_hidden_state)
else:
out = outputs.last_hidden_state
out = out.to(self.transformer.wte.weight.device)
logits = self.transformer.wte(out, True)
if self.logit_scale is not None:
if self.logit_scale == 0:
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
logits *= self.logit_scale
loss = None
if labels is not None:
_labels = torch.roll(labels, shifts=-1)
_labels[:, -1] = -100
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)