File size: 1,916 Bytes
b1265c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462191
b1265c7
 
1462191
b1265c7
 
1462191
b1265c7
 
1462191
b1265c7
 
 
 
 
 
 
 
 
1462191
 
 
 
 
b1265c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
license: mit
base_model: microsoft/biogpt
tags:
- generated_from_trainer
datasets:
- ncbi_disease
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: lab7_models
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: ncbi_disease
      type: ncbi_disease
      config: ncbi_disease
      split: validation
      args: ncbi_disease
    metrics:
    - name: Precision
      type: precision
      value: 0.1320754716981132
    - name: Recall
      type: recall
      value: 0.005426356589147287
    - name: F1
      type: f1
      value: 0.010424422933730455
    - name: Accuracy
      type: accuracy
      value: 0.904621435594887
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lab7_models

This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the ncbi_disease dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3256
- Precision: 0.1321
- Recall: 0.0054
- F1: 0.0104
- Accuracy: 0.9046

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results



### Framework versions

- Transformers 4.51.0
- Pytorch 2.1.0+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1