Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,90 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
**
|
|
|
|
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
##
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
|
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
# 🌾 LLaMA Late Blight Classifier (Huancavelica, Peru)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This model is a fine-tuned classifier based on `openlm-research/open_llama_3b`, trained to predict **potato late blight risk levels** (`Bajo`, `Moderado`, `Alto`) in the highlands of Huancavelica, Peru. It uses environmental inputs (temperature, humidity, precipitation) and crop variety metadata to output discrete classifications.
|
4 |
|
5 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
## 🤝 Use Case
|
8 |
|
9 |
+
**Direct Use**: Agronomic advisory systems or research tools predicting potato late blight risk from structured prompts or API queries.
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
**Not for**: Open-ended generation, conversational use, or regions with different pathogen pressures without retraining.
|
12 |
|
13 |
+
---
|
14 |
|
15 |
+
## 🌐 Model Details
|
16 |
|
17 |
+
- **Base model**: `openlm-research/open_llama_3b`
|
18 |
+
- **Architecture**: LLaMA-3B with classification head (`AutoModelForSequenceClassification`)
|
19 |
+
- **Fine-tuning method**: Full fine-tuning on a balanced, curated dataset (not LoRA)
|
20 |
+
- **Tokenizer**: Compatible LLaMA tokenizer (`tokenizer.model` included)
|
21 |
+
- **Language**: Spanish (with structured Spanish prompts)
|
22 |
+
- **Task**: Hard classification (3-class)
|
23 |
|
24 |
+
---
|
25 |
|
26 |
+
## 🎓 Training
|
27 |
+
|
28 |
+
- **Dataset**: 156 training + 24 validation examples (balanced across 3 classes)
|
29 |
+
- **Labels**: `Bajo`, `Moderado`, `Alto`
|
30 |
+
- **Format** (JSONL):
|
31 |
+
```json
|
32 |
+
{
|
33 |
+
"instruction": "Evalúa el riesgo de tizón tardío basado en los datos climáticos y la variedad.",
|
34 |
+
"input": "Escenario 1: Temperatura promedio 17.2 °C, Humedad 83%, Precipitación 3.4 mm, Variedad Yungay",
|
35 |
+
"output": "Moderado"
|
36 |
+
}
|
37 |
+
```
|
38 |
+
- **Epochs**: 10
|
39 |
+
- **Optimizer**: AdamW (mixed precision)
|
40 |
+
- **Hardware**: 1x A100 40GB (Colab Pro, single GPU)
|
41 |
|
42 |
+
---
|
43 |
|
44 |
+
## 🌿 Evaluation (Balanced Test Set, n = 90)
|
45 |
|
46 |
+
| Class | Precision | Recall | F1 | Support |
|
47 |
+
|-----------|-----------|--------|-------|---------|
|
48 |
+
| Bajo | 1.00 | 0.90 | 0.95 | 30 |
|
49 |
+
| Moderado | 0.91 | 1.00 | 0.95 | 30 |
|
50 |
+
| Alto | 1.00 | 1.00 | 1.00 | 30 |
|
51 |
+
| **Accuracy** | | | **0.97** | 90 |
|
52 |
|
53 |
+
---
|
54 |
|
55 |
+
## 📈 Intended Use and Limitations
|
56 |
|
57 |
+
- **Designed for**: Highland regions in Peru (esp. Huancavelica), with expert-labeled ground truth and local pathogen behavior.
|
58 |
+
- **Limitations**:
|
59 |
+
- May generalize poorly to lowland areas or different varieties.
|
60 |
+
- Not a substitute for in-field disease monitoring.
|
61 |
|
62 |
+
---
|
63 |
|
64 |
+
## 📑 Citation
|
65 |
|
66 |
+
If you use this model, please cite:
|
67 |
|
68 |
+
> Jorge Luis Alonso, *Predicting Potato Late Blight in Huancavelica Using LLaMA Models*, 2025
|
69 |
|
70 |
+
---
|
71 |
|
72 |
+
## 🌍 License
|
73 |
|
74 |
+
MIT License (model + training data)
|
75 |
|
76 |
+
---
|
77 |
|
78 |
+
## ⚡ Quick Inference Example
|
79 |
|
80 |
+
```python
|
81 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
82 |
+
model = AutoModelForSequenceClassification.from_pretrained("jalonso24/llama-lateblight-classifier")
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained("jalonso24/llama-lateblight-classifier")
|
84 |
+
clf = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=1)
|
85 |
|
86 |
+
prompt = "Escenario: Temperatura 18.1 °C, Humedad 85%, Variedad Amarilis"
|
87 |
+
clf(prompt)
|
88 |
+
# ➞ [{'label': 'Alto', 'score': 0.95}]
|
89 |
+
```
|
90 |
|
|