jalonso24 commited on
Commit
5cbbdd6
·
verified ·
1 Parent(s): f796c4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -171
README.md CHANGED
@@ -1,199 +1,90 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
196
 
197
- ## Model Card Contact
 
 
 
198
 
199
- [More Information Needed]
 
1
+ # 🌾 LLaMA Late Blight Classifier (Huancavelica, Peru)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ This model is a fine-tuned classifier based on `openlm-research/open_llama_3b`, trained to predict **potato late blight risk levels** (`Bajo`, `Moderado`, `Alto`) in the highlands of Huancavelica, Peru. It uses environmental inputs (temperature, humidity, precipitation) and crop variety metadata to output discrete classifications.
4
 
5
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ ## 🤝 Use Case
8
 
9
+ **Direct Use**: Agronomic advisory systems or research tools predicting potato late blight risk from structured prompts or API queries.
 
 
 
 
10
 
11
+ **Not for**: Open-ended generation, conversational use, or regions with different pathogen pressures without retraining.
12
 
13
+ ---
14
 
15
+ ## 🌐 Model Details
16
 
17
+ - **Base model**: `openlm-research/open_llama_3b`
18
+ - **Architecture**: LLaMA-3B with classification head (`AutoModelForSequenceClassification`)
19
+ - **Fine-tuning method**: Full fine-tuning on a balanced, curated dataset (not LoRA)
20
+ - **Tokenizer**: Compatible LLaMA tokenizer (`tokenizer.model` included)
21
+ - **Language**: Spanish (with structured Spanish prompts)
22
+ - **Task**: Hard classification (3-class)
23
 
24
+ ---
25
 
26
+ ## 🎓 Training
27
+
28
+ - **Dataset**: 156 training + 24 validation examples (balanced across 3 classes)
29
+ - **Labels**: `Bajo`, `Moderado`, `Alto`
30
+ - **Format** (JSONL):
31
+ ```json
32
+ {
33
+ "instruction": "Evalúa el riesgo de tizón tardío basado en los datos climáticos y la variedad.",
34
+ "input": "Escenario 1: Temperatura promedio 17.2 °C, Humedad 83%, Precipitación 3.4 mm, Variedad Yungay",
35
+ "output": "Moderado"
36
+ }
37
+ ```
38
+ - **Epochs**: 10
39
+ - **Optimizer**: AdamW (mixed precision)
40
+ - **Hardware**: 1x A100 40GB (Colab Pro, single GPU)
41
 
42
+ ---
43
 
44
+ ## 🌿 Evaluation (Balanced Test Set, n = 90)
45
 
46
+ | Class | Precision | Recall | F1 | Support |
47
+ |-----------|-----------|--------|-------|---------|
48
+ | Bajo | 1.00 | 0.90 | 0.95 | 30 |
49
+ | Moderado | 0.91 | 1.00 | 0.95 | 30 |
50
+ | Alto | 1.00 | 1.00 | 1.00 | 30 |
51
+ | **Accuracy** | | | **0.97** | 90 |
52
 
53
+ ---
54
 
55
+ ## 📈 Intended Use and Limitations
56
 
57
+ - **Designed for**: Highland regions in Peru (esp. Huancavelica), with expert-labeled ground truth and local pathogen behavior.
58
+ - **Limitations**:
59
+ - May generalize poorly to lowland areas or different varieties.
60
+ - Not a substitute for in-field disease monitoring.
61
 
62
+ ---
63
 
64
+ ## 📑 Citation
65
 
66
+ If you use this model, please cite:
67
 
68
+ > Jorge Luis Alonso, *Predicting Potato Late Blight in Huancavelica Using LLaMA Models*, 2025
69
 
70
+ ---
71
 
72
+ ## 🌍 License
73
 
74
+ MIT License (model + training data)
75
 
76
+ ---
77
 
78
+ ## Quick Inference Example
79
 
80
+ ```python
81
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
82
+ model = AutoModelForSequenceClassification.from_pretrained("jalonso24/llama-lateblight-classifier")
83
+ tokenizer = AutoTokenizer.from_pretrained("jalonso24/llama-lateblight-classifier")
84
+ clf = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=1)
85
 
86
+ prompt = "Escenario: Temperatura 18.1 °C, Humedad 85%, Variedad Amarilis"
87
+ clf(prompt)
88
+ # ➞ [{'label': 'Alto', 'score': 0.95}]
89
+ ```
90