Upload handler.py
Browse files- handler.py +68 -0
handler.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
4 |
+
|
5 |
+
# 定义模型处理类
|
6 |
+
class ModelHandler(object):
|
7 |
+
def __init__(self):
|
8 |
+
self.tokenizer = None
|
9 |
+
self.model = None
|
10 |
+
self.device = None
|
11 |
+
|
12 |
+
def load_model(self, model_dir):
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
model_path = model_dir
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device)
|
18 |
+
self.model.eval()
|
19 |
+
|
20 |
+
print(f"Tokenizer and Model loaded from: {model_path} to device: {self.device}")
|
21 |
+
|
22 |
+
|
23 |
+
def preprocess(self, request):
|
24 |
+
input_text = request.get("inputs", request.get("text"))
|
25 |
+
if not input_text:
|
26 |
+
raise ValueError("Input text is missing in the request. Please provide 'inputs' or 'text' in your request.")
|
27 |
+
|
28 |
+
history = []
|
29 |
+
history.append({"role": "user", "content": input_text})
|
30 |
+
conversion = self.tokenizer.apply_chat_template(history, add_generation_prompt=True, tokenize=False)
|
31 |
+
encoding = self.tokenizer(conversion, return_tensors="pt").to(self.device)
|
32 |
+
return encoding
|
33 |
+
|
34 |
+
|
35 |
+
def predict(self, model_input):
|
36 |
+
with torch.no_grad():
|
37 |
+
output = self.model.generate(
|
38 |
+
**model_input,
|
39 |
+
max_new_tokens=1024,
|
40 |
+
temperature=1.5,
|
41 |
+
do_sample=True,
|
42 |
+
pad_token_id=self.tokenizer.eos_token_id
|
43 |
+
)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
def postprocess(self, prediction):
|
48 |
+
generated_text = self.tokenizer.decode(prediction[0], skip_special_tokens=True)
|
49 |
+
return {"response": generated_text}
|
50 |
+
|
51 |
+
|
52 |
+
_service = ModelHandler()
|
53 |
+
|
54 |
+
def load():
|
55 |
+
model_dir = '/home/aistudio/export'
|
56 |
+
_service.load_model(model_dir)
|
57 |
+
|
58 |
+
|
59 |
+
def preprocess(request):
|
60 |
+
return _service.preprocess(request)
|
61 |
+
|
62 |
+
|
63 |
+
def predict(data):
|
64 |
+
return _service.predict(data)
|
65 |
+
|
66 |
+
|
67 |
+
def postprocess(prediction):
|
68 |
+
return _service.postprocess(prediction)
|