Commit
·
db7e924
1
Parent(s):
7484b19
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.63 +/- 0.71
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d36e453158f01f057fe55a593304a98e828026ec2520337b13120369ea127ae
|
3 |
+
size 109620
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[ 1.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8338b625e0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8338b5fc00>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1680748852908787846,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjpLJPmobjrtv1wk/jpLJPmobjrtv1wk/jpLJPmobjrtv1wk/jpLJPmobjrtv1wk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9enGP8u7qz9vQJC/hFopveEtmb9WbxA/TpJgP4mkR74jaN2/sCm/PzwMjb+CLWG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACOksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]]",
|
62 |
+
"desired_goal": "[[ 1.5540148 1.3416685 -1.1269664 ]\n [-0.04134609 -1.1967126 0.56419885]\n [ 0.87723243 -0.19496359 -1.7297405 ]\n [ 1.4934597 -1.1019359 -0.21990016]]",
|
63 |
+
"observation": "[[ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfVGBvUDNBr7+AjE98ouZPb29XD3B2Yo+4WI+PfQnrD3LSY89/sMAvbQJoD3pjB4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.06314371 -0.13164234 0.04321574]\n [ 0.07497396 0.05389189 0.27119258]\n [ 0.04648102 0.08406058 0.06996497]\n [-0.03143691 0.07814351 0.1548344 ]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYtnMIamF77+UhpRSlIwBbJRLMowBdJRHQKb4R2USqVB1fZQoaAZoCWgPQwjKiXYVUn7ov5SGlFKUaBVLMmgWR0Cm+Ayf16E8dX2UKGgGaAloD0MIteBFX0Fa/L+UhpRSlGgVSzJoFkdApvfQuM+/xnV9lChoBmgJaA9DCHvBpzl5UQHAlIaUUpRoFUsyaBZHQKb3krZrYXh1fZQoaAZoCWgPQwjUuDe/YaLnv5SGlFKUaBVLMmgWR0Cm+VPhybQUdX2UKGgGaAloD0MIQpPEknJ3+b+UhpRSlGgVSzJoFkdApvkZCx/us3V9lChoBmgJaA9DCFTm5hvRPfi/lIaUUpRoFUsyaBZHQKb43Ra5f+l1fZQoaAZoCWgPQwgjEK/rF2z5v5SGlFKUaBVLMmgWR0Cm+J8mKIi1dX2UKGgGaAloD0MI+x9grdo1AMCUhpRSlGgVSzJoFkdApvpUTYdyUHV9lChoBmgJaA9DCKjjMQOVMfK/lIaUUpRoFUsyaBZHQKb6GYUnG851fZQoaAZoCWgPQwhSSZ2AJsLkv5SGlFKUaBVLMmgWR0Cm+d16eGwidX2UKGgGaAloD0MI0nDK3Hzj8L+UhpRSlGgVSzJoFkdApvmfT5O8CnV9lChoBmgJaA9DCGagMv59Rum/lIaUUpRoFUsyaBZHQKb7xD+BH091fZQoaAZoCWgPQwi69C9JZQoBwJSGlFKUaBVLMmgWR0Cm+4qG+K0ldX2UKGgGaAloD0MIoBnEB3a8+r+UhpRSlGgVSzJoFkdApvtP2PDHfnV9lChoBmgJaA9DCLcIjPUNDArAlIaUUpRoFUsyaBZHQKb7EwhW5pd1fZQoaAZoCWgPQwiPb+8a9CUAwJSGlFKUaBVLMmgWR0Cm/ZWXsw+MdX2UKGgGaAloD0MIJEOOrWeI5L+UhpRSlGgVSzJoFkdApv1bm+0w8HV9lChoBmgJaA9DCMyXF2AfnQDAlIaUUpRoFUsyaBZHQKb9IJswco91fZQoaAZoCWgPQwisjhzpDEzxv5SGlFKUaBVLMmgWR0Cm/OM9jgAIdX2UKGgGaAloD0MIuMzpspjY+r+UhpRSlGgVSzJoFkdApv9IUYbbUXV9lChoBmgJaA9DCApMp3UbVPK/lIaUUpRoFUsyaBZHQKb/DiBoVVR1fZQoaAZoCWgPQwgQIa6cvbPrv5SGlFKUaBVLMmgWR0Cm/tMbNr0rdX2UKGgGaAloD0MIHomXp3MlA8CUhpRSlGgVSzJoFkdApv6Vw3o9tHV9lChoBmgJaA9DCFga+FENGwTAlIaUUpRoFUsyaBZHQKcBGC7K7qZ1fZQoaAZoCWgPQwgEWU+tvrrgv5SGlFKUaBVLMmgWR0CnAN6Ei+tbdX2UKGgGaAloD0MIK8B3mzdO6b+UhpRSlGgVSzJoFkdApwCjdnCfpXV9lChoBmgJaA9DCGDKwAEt3fi/lIaUUpRoFUsyaBZHQKcAZm4iHIp1fZQoaAZoCWgPQwg6CDpa1ZLuv5SGlFKUaBVLMmgWR0CnAuRq46OpdX2UKGgGaAloD0MIiC09murJ+b+UhpRSlGgVSzJoFkdApwKqrJbMYHV9lChoBmgJaA9DCBQJpppZiwTAlIaUUpRoFUsyaBZHQKcCb6a9bot1fZQoaAZoCWgPQwh5Wn7gKs/1v5SGlFKUaBVLMmgWR0CnAjL0Bfa6dX2UKGgGaAloD0MI1nQ90XXh4L+UhpRSlGgVSzJoFkdApwS1RP420nV9lChoBmgJaA9DCLwgIjXtIvW/lIaUUpRoFUsyaBZHQKcEey1NQCV1fZQoaAZoCWgPQwgyIeaSqu37v5SGlFKUaBVLMmgWR0CnBD+yAxzrdX2UKGgGaAloD0MIUz9vKlKBBMCUhpRSlGgVSzJoFkdApwQChpQDWHV9lChoBmgJaA9DCP2FHjF67uy/lIaUUpRoFUsyaBZHQKcF63y7PIJ1fZQoaAZoCWgPQwjnxvSEJR71v5SGlFKUaBVLMmgWR0CnBbEKE385dX2UKGgGaAloD0MIYU87/DWZA8CUhpRSlGgVSzJoFkdApwV1RaX8fnV9lChoBmgJaA9DCNzxJr9FRwHAlIaUUpRoFUsyaBZHQKcFN4DcM3J1fZQoaAZoCWgPQwjZlZaRek/rv5SGlFKUaBVLMmgWR0CnBvhrWRRudX2UKGgGaAloD0MImfIhqBq9+b+UhpRSlGgVSzJoFkdApwa9nXd0rHV9lChoBmgJaA9DCJTcYROZOem/lIaUUpRoFUsyaBZHQKcGgbjLjgh1fZQoaAZoCWgPQwi8PJ0rSknxv5SGlFKUaBVLMmgWR0CnBkOP/7zkdX2UKGgGaAloD0MI76oHzEOm8L+UhpRSlGgVSzJoFkdApwgFHtnf23V9lChoBmgJaA9DCCiCOA8n8AXAlIaUUpRoFUsyaBZHQKcHyl6Z6Ut1fZQoaAZoCWgPQwhZxLDDmBQAwJSGlFKUaBVLMmgWR0CnB45xR2r5dX2UKGgGaAloD0MIsyRATS1b5b+UhpRSlGgVSzJoFkdApwdQaNuLrHV9lChoBmgJaA9DCHvYCwVsB++/lIaUUpRoFUsyaBZHQKcJDg4Otnx1fZQoaAZoCWgPQwhCX3r7c1Hkv5SGlFKUaBVLMmgWR0CnCNOPeYUndX2UKGgGaAloD0MITl5kAn6N77+UhpRSlGgVSzJoFkdApwiXjMmnfnV9lChoBmgJaA9DCAsL7gc8MO+/lIaUUpRoFUsyaBZHQKcIWZfD1oR1fZQoaAZoCWgPQwjDRlm/mRgBwJSGlFKUaBVLMmgWR0CnChlh5PdmdX2UKGgGaAloD0MIVHB4QUSqBMCUhpRSlGgVSzJoFkdApwnemDUVjHV9lChoBmgJaA9DCK36XG3FfvW/lIaUUpRoFUsyaBZHQKcJopc5bQl1fZQoaAZoCWgPQwgVi98UVir6v5SGlFKUaBVLMmgWR0CnCWSPuG9IdX2UKGgGaAloD0MISYJwBRTq8b+UhpRSlGgVSzJoFkdApwsl2TxG2HV9lChoBmgJaA9DCMxgjEgUmva/lIaUUpRoFUsyaBZHQKcK6xubZvl1fZQoaAZoCWgPQwjqQNZTq6/wv5SGlFKUaBVLMmgWR0CnCq8KXv6TdX2UKGgGaAloD0MIT5SERNrmAMCUhpRSlGgVSzJoFkdApwpxGnXNDHV9lChoBmgJaA9DCKxxNh0B3Py/lIaUUpRoFUsyaBZHQKcMMKl54W11fZQoaAZoCWgPQwhvgm+aPrvlv5SGlFKUaBVLMmgWR0CnC/XtjTa1dX2UKGgGaAloD0MII/Qz9bpF6L+UhpRSlGgVSzJoFkdApwu5z3h4uHV9lChoBmgJaA9DCHl3ZKw2v/m/lIaUUpRoFUsyaBZHQKcLe+cpb2V1fZQoaAZoCWgPQwjRIAVPIZfwv5SGlFKUaBVLMmgWR0CnDTgYP5HmdX2UKGgGaAloD0MIBU8hV+pZ/7+UhpRSlGgVSzJoFkdApwz9grpaBHV9lChoBmgJaA9DCNmvO915AgHAlIaUUpRoFUsyaBZHQKcMwV+I/JN1fZQoaAZoCWgPQwjTMecZ+5L8v5SGlFKUaBVLMmgWR0CnDINygf2cdX2UKGgGaAloD0MI9ntinSofBcCUhpRSlGgVSzJoFkdApw5RlBhQWXV9lChoBmgJaA9DCFgBvtu8cQnAlIaUUpRoFUsyaBZHQKcOFtaY/ml1fZQoaAZoCWgPQwiQvd798d7vv5SGlFKUaBVLMmgWR0CnDdrhR64UdX2UKGgGaAloD0MIsaNxqN+lAMCUhpRSlGgVSzJoFkdApw2c70WdmXV9lChoBmgJaA9DCN0jm6vmWQLAlIaUUpRoFUsyaBZHQKcPV6XSjQB1fZQoaAZoCWgPQwgZqfdUTrv6v5SGlFKUaBVLMmgWR0CnDxzkQwsYdX2UKGgGaAloD0MIoKUr2EY87b+UhpRSlGgVSzJoFkdApw7g9aEBbXV9lChoBmgJaA9DCLyuX7Abtvu/lIaUUpRoFUsyaBZHQKcOowFC9h91fZQoaAZoCWgPQwjHL7yS5Lnfv5SGlFKUaBVLMmgWR0CnEGE8A7xNdX2UKGgGaAloD0MISSu+ofDZAMCUhpRSlGgVSzJoFkdApxAmfwqiGnV9lChoBmgJaA9DCHP3OT5anPq/lIaUUpRoFUsyaBZHQKcP6mG/N7l1fZQoaAZoCWgPQwhGsdzSakjqv5SGlFKUaBVLMmgWR0CnD6xgAp8XdX2UKGgGaAloD0MIdLaA0Hp45r+UhpRSlGgVSzJoFkdApxFv13+uNnV9lChoBmgJaA9DCH44SIjyRQDAlIaUUpRoFUsyaBZHQKcRNQGfPHF1fZQoaAZoCWgPQwh1q+ek903wv5SGlFKUaBVLMmgWR0CnEPjVpbljdX2UKGgGaAloD0MIvR5Mio/P87+UhpRSlGgVSzJoFkdApxC6sEJSi3V9lChoBmgJaA9DCM+kTdU90gHAlIaUUpRoFUsyaBZHQKcSebIcR151fZQoaAZoCWgPQwix+bg2VKwEwJSGlFKUaBVLMmgWR0CnEj70OEuhdX2UKGgGaAloD0MI6ukj8Icf+7+UhpRSlGgVSzJoFkdApxIC/mDDj3V9lChoBmgJaA9DCCF3EaYoF+O/lIaUUpRoFUsyaBZHQKcRxRjz7Mx1fZQoaAZoCWgPQwjyzTY3pgcEwJSGlFKUaBVLMmgWR0CnE3whfShKdX2UKGgGaAloD0MIiQtAo3SJAMCUhpRSlGgVSzJoFkdApxNBbnoxH3V9lChoBmgJaA9DCAzqW+Z0Gfy/lIaUUpRoFUsyaBZHQKcTBUsFt9B1fZQoaAZoCWgPQwhhqMMKt/zsv5SGlFKUaBVLMmgWR0CnEscxKxs3dX2UKGgGaAloD0MI7MIPzqcO6r+UhpRSlGgVSzJoFkdApxSBwXIlt3V9lChoBmgJaA9DCJSD2QQYVvS/lIaUUpRoFUsyaBZHQKcURv1DjR51fZQoaAZoCWgPQwgktVAyObX1v5SGlFKUaBVLMmgWR0CnFAryc0+DdX2UKGgGaAloD0MItmlsrwU9AcCUhpRSlGgVSzJoFkdApxPNC5VfeHV9lChoBmgJaA9DCNbG2Akvwf2/lIaUUpRoFUsyaBZHQKcVgmv4dp91fZQoaAZoCWgPQwhbJO1GH5MFwJSGlFKUaBVLMmgWR0CnFUeJP69CdX2UKGgGaAloD0MIsky/RLw187+UhpRSlGgVSzJoFkdApxULaZhKDnV9lChoBmgJaA9DCFsjgnFwqfm/lIaUUpRoFUsyaBZHQKcUzZZjhDR1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2169d295bad7e1edb4bd3bc907ac70a50e5207a2b63e1c0357a8a017e230e5fc
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df174cb405351fbab0e1977b7557e08c0b3c7b5613d3bcd818f03b8a1220fde5
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
|
|
1 |
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
- Python: 3.9.16
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f614373b820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6143736ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680368991238291699, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvCXRPg2uWb3fig4/vCXRPg2uWb3fig4/vCXRPg2uWb3fig4/vCXRPg2uWb3fig4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4EzXP/LGhT/YYZC+vzzTP7RxyD+JPSO8Vltdvzgmuz+nWXq/cnnHPqxld7/z/0G/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC8JdE+Da5Zvd+KDj/riaS6QLgovJJgODy8JdE+Da5Zvd+KDj/riaS6QLgovJJgODy8JdE+Da5Zvd+KDj/riaS6QLgovJJgODy8JdE+Da5Zvd+KDj/riaS6QLgovJJgODyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40849102 -0.0531445 0.5568065 ]\n [ 0.40849102 -0.0531445 0.5568065 ]\n [ 0.40849102 -0.0531445 0.5568065 ]\n [ 0.40849102 -0.0531445 0.5568065 ]]", "desired_goal": "[[ 1.6820335 1.0451338 -0.2819965 ]\n [ 1.6502913 1.56597 -0.0099634 ]\n [-0.8646749 1.4621038 -0.9779305 ]\n [ 0.38959843 -0.96639514 -0.7578117 ]]", "observation": "[[ 0.40849102 -0.0531445 0.5568065 -0.00125533 -0.01029783 0.01125349]\n [ 0.40849102 -0.0531445 0.5568065 -0.00125533 -0.01029783 0.01125349]\n [ 0.40849102 -0.0531445 0.5568065 -0.00125533 -0.01029783 0.01125349]\n [ 0.40849102 -0.0531445 0.5568065 -0.00125533 -0.01029783 0.01125349]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9J8jPVNrAj4ku5w9hC+NPY/WUj3wQ4o9bXAaPIYKCj1MwwY+tAxIvWuGvDsvqSs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03994747 0.12736253 0.07652882]\n [ 0.06893829 0.05147415 0.06751239]\n [ 0.00942622 0.03370144 0.13160437]\n [-0.04884024 0.00575333 0.16763757]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqFFIMqt3DMCUhpRSlIwBbJRLMowBdJRHQKWGp9E1EVp1fZQoaAZoCWgPQwhaEMr7OJoCwJSGlFKUaBVLMmgWR0ClhmNO/L1VdX2UKGgGaAloD0MIqkiFsYUADcCUhpRSlGgVSzJoFkdApYYopON5t3V9lChoBmgJaA9DCEyqtpvgyx3AlIaUUpRoFUsyaBZHQKWF7Fkxyn11fZQoaAZoCWgPQwhqiCr8Gb4WwJSGlFKUaBVLMmgWR0Clh5nM2WIHdX2UKGgGaAloD0MI9UcYBizRIcCUhpRSlGgVSzJoFkdApYdVR77bc3V9lChoBmgJaA9DCFcju9IyyiLAlIaUUpRoFUsyaBZHQKWHGruIAOt1fZQoaAZoCWgPQwhpccYwJ6gTwJSGlFKUaBVLMmgWR0Clht5eZ5RkdX2UKGgGaAloD0MIK0zfawguD8CUhpRSlGgVSzJoFkdApYiGl41P33V9lChoBmgJaA9DCBBdUN8ydx/AlIaUUpRoFUsyaBZHQKWIQr/bTMJ1fZQoaAZoCWgPQwjvVMA9z+8awJSGlFKUaBVLMmgWR0CliAhvze41dX2UKGgGaAloD0MI9Zz0vvFlEcCUhpRSlGgVSzJoFkdApYfMGeMAFXV9lChoBmgJaA9DCEDa/wBrtRTAlIaUUpRoFUsyaBZHQKWJrejVQRB1fZQoaAZoCWgPQwgiUtMuplkWwJSGlFKUaBVLMmgWR0CliWp2t+1CdX2UKGgGaAloD0MIp804DVGlFcCUhpRSlGgVSzJoFkdApYkxRMvh63V9lChoBmgJaA9DCJ0tILQeniDAlIaUUpRoFUsyaBZHQKWI9YZl4C91fZQoaAZoCWgPQwglWBzO/HoVwJSGlFKUaBVLMmgWR0Cli13cQAdXdX2UKGgGaAloD0MI325JDtj1CMCUhpRSlGgVSzJoFkdApYsZ5zHS4XV9lChoBmgJaA9DCGMOgo5WJRHAlIaUUpRoFUsyaBZHQKWK395Qgs91fZQoaAZoCWgPQwjJAbuaPNUQwJSGlFKUaBVLMmgWR0CliqViONo8dX2UKGgGaAloD0MInDV4X5XbHsCUhpRSlGgVSzJoFkdApYzcwUQCjnV9lChoBmgJaA9DCE6Zm29ERxDAlIaUUpRoFUsyaBZHQKWMmMspXp51fZQoaAZoCWgPQwgUX+0oziESwJSGlFKUaBVLMmgWR0CljF655JK8dX2UKGgGaAloD0MIh+C4jJuKGMCUhpRSlGgVSzJoFkdApYwi3PRiPXV9lChoBmgJaA9DCGADIsSVsxnAlIaUUpRoFUsyaBZHQKWOgml67d11fZQoaAZoCWgPQwjluFM6WI8VwJSGlFKUaBVLMmgWR0Cljj8L0BfbdX2UKGgGaAloD0MIWhKgppZtB8CUhpRSlGgVSzJoFkdApY4E8La24XV9lChoBmgJaA9DCNRJtrqcUhvAlIaUUpRoFUsyaBZHQKWNyN83Mpx1fZQoaAZoCWgPQwiZ8Ev9vDkXwJSGlFKUaBVLMmgWR0ClkB4MnZ00dX2UKGgGaAloD0MISHAjZYtEIMCUhpRSlGgVSzJoFkdApY/amTC+DnV9lChoBmgJaA9DCDPDRlm/qSHAlIaUUpRoFUsyaBZHQKWPoKzAvct1fZQoaAZoCWgPQwjTF0LO+/8bwJSGlFKUaBVLMmgWR0Clj2S13MY/dX2UKGgGaAloD0MIKAtfX+syGMCUhpRSlGgVSzJoFkdApZGpxgiNbXV9lChoBmgJaA9DCMTMPo9RvhbAlIaUUpRoFUsyaBZHQKWRZd/J/5N1fZQoaAZoCWgPQwgdAdwsXiwIwJSGlFKUaBVLMmgWR0ClkSu8brC4dX2UKGgGaAloD0MIoBov3SRWGcCUhpRSlGgVSzJoFkdApZDvxri2lXV9lChoBmgJaA9DCD0racU3tAbAlIaUUpRoFUsyaBZHQKWTJycTakB1fZQoaAZoCWgPQwgTukvirMAiwJSGlFKUaBVLMmgWR0ClkuMHKOktdX2UKGgGaAloD0MIBVH3AUiND8CUhpRSlGgVSzJoFkdApZKoTM7lrHV9lChoBmgJaA9DCAFRMGMKFhLAlIaUUpRoFUsyaBZHQKWSbFz+3ph1fZQoaAZoCWgPQwivJk9ZTXcPwJSGlFKUaBVLMmgWR0CllCUNayKOdX2UKGgGaAloD0MIlIWvr3XZFsCUhpRSlGgVSzJoFkdApZPgywfQr3V9lChoBmgJaA9DCAZ/v5gtSSPAlIaUUpRoFUsyaBZHQKWTpmITGo91fZQoaAZoCWgPQwghkiHH1sMdwJSGlFKUaBVLMmgWR0Clk2n+AEt/dX2UKGgGaAloD0MIhj3t8NfkE8CUhpRSlGgVSzJoFkdApZUehVU+93V9lChoBmgJaA9DCEPLun8shBTAlIaUUpRoFUsyaBZHQKWU2jv/io91fZQoaAZoCWgPQwiV1AloIjwjwJSGlFKUaBVLMmgWR0CllJ/aYeDGdX2UKGgGaAloD0MIJXUCmghDIMCUhpRSlGgVSzJoFkdApZRjlT3qRnV9lChoBmgJaA9DCPYKC+4HbB7AlIaUUpRoFUsyaBZHQKWWC9KVY6p1fZQoaAZoCWgPQwhSDmYTYHgRwJSGlFKUaBVLMmgWR0Cllcddmg8KdX2UKGgGaAloD0MIcqd0sP6vH8CUhpRSlGgVSzJoFkdApZWNFlTWG3V9lChoBmgJaA9DCORmuAGf3xPAlIaUUpRoFUsyaBZHQKWVUImgJ1J1fZQoaAZoCWgPQwh3ai43GPodwJSGlFKUaBVLMmgWR0Cllv7tRekYdX2UKGgGaAloD0MIWmWmtP7WBcCUhpRSlGgVSzJoFkdApZa6emNzbXV9lChoBmgJaA9DCFr1udqK1SDAlIaUUpRoFUsyaBZHQKWWf9zfaYh1fZQoaAZoCWgPQwj8jAsHQhIPwJSGlFKUaBVLMmgWR0CllkNNi6QOdX2UKGgGaAloD0MItDnObcJtF8CUhpRSlGgVSzJoFkdApZf3HcUM5XV9lChoBmgJaA9DCNY4m44Abh7AlIaUUpRoFUsyaBZHQKWXszGgi/x1fZQoaAZoCWgPQwiJesGnOdkMwJSGlFKUaBVLMmgWR0Cll3jOLR8ddX2UKGgGaAloD0MIiUUMO4y5EcCUhpRSlGgVSzJoFkdApZc8p9ZzP3V9lChoBmgJaA9DCAQcQpWanQ/AlIaUUpRoFUsyaBZHQKWY8XTmW+p1fZQoaAZoCWgPQwhljXqIRjcKwJSGlFKUaBVLMmgWR0ClmK0tyxRmdX2UKGgGaAloD0MIGxGMg0tnCsCUhpRSlGgVSzJoFkdApZhydnTRY3V9lChoBmgJaA9DCDlkA+licxfAlIaUUpRoFUsyaBZHQKWYNjcVQAN1fZQoaAZoCWgPQwiWICOgwgETwJSGlFKUaBVLMmgWR0Clme6Uqx1QdX2UKGgGaAloD0MILNSa5h1nEcCUhpRSlGgVSzJoFkdApZmqTfR/mXV9lChoBmgJaA9DCKPlQA+1TR3AlIaUUpRoFUsyaBZHQKWZcB8x9G91fZQoaAZoCWgPQwgb2gBsQMQLwJSGlFKUaBVLMmgWR0ClmTO7pV0cdX2UKGgGaAloD0MIKH6MuWspDMCUhpRSlGgVSzJoFkdApZrebgCOm3V9lChoBmgJaA9DCEaU9gZfoCHAlIaUUpRoFUsyaBZHQKWamh+vyLB1fZQoaAZoCWgPQwieDI6SV1ccwJSGlFKUaBVLMmgWR0Clml/Xf642dX2UKGgGaAloD0MIucSRByLrEcCUhpRSlGgVSzJoFkdApZojlmvnsHV9lChoBmgJaA9DCM0DWOTXDwnAlIaUUpRoFUsyaBZHQKWb6ZOSGJx1fZQoaAZoCWgPQwhMVdriGr8IwJSGlFKUaBVLMmgWR0Clm6VYQrc1dX2UKGgGaAloD0MIrUuN0M/EFcCUhpRSlGgVSzJoFkdApZtq6H0sfHV9lChoBmgJaA9DCOEp5Eo9ixDAlIaUUpRoFUsyaBZHQKWbLmxMWXV1fZQoaAZoCWgPQwjo3O16adobwJSGlFKUaBVLMmgWR0ClnO6W5YozdX2UKGgGaAloD0MIv/T256KhCMCUhpRSlGgVSzJoFkdApZyqHGjsU3V9lChoBmgJaA9DCJgycEBL9w3AlIaUUpRoFUsyaBZHQKWcb8Kohpx1fZQoaAZoCWgPQwhDO6dZoB0JwJSGlFKUaBVLMmgWR0ClnDN8VpK0dX2UKGgGaAloD0MIAFXcuMW8GcCUhpRSlGgVSzJoFkdApZ36rWAf+3V9lChoBmgJaA9DCLHDmPT3EhzAlIaUUpRoFUsyaBZHQKWdtlCkXUJ1fZQoaAZoCWgPQwhvYkhOJt4XwJSGlFKUaBVLMmgWR0ClnXwEZBLPdX2UKGgGaAloD0MIvko+dhdYEsCUhpRSlGgVSzJoFkdApZ0/oA4n4XV9lChoBmgJaA9DCOpdvB+3/wnAlIaUUpRoFUsyaBZHQKWe+DpTuOV1fZQoaAZoCWgPQwipaRfTTFcDwJSGlFKUaBVLMmgWR0ClnrPoV2zOdX2UKGgGaAloD0MIHqM883KYHcCUhpRSlGgVSzJoFkdApZ55rnDBM3V9lChoBmgJaA9DCEn1nV+U4ATAlIaUUpRoFUsyaBZHQKWePZf2K2t1fZQoaAZoCWgPQwjI0/IDV8kawJSGlFKUaBVLMmgWR0CloDch1TzedX2UKGgGaAloD0MIrU7OUNyJIMCUhpRSlGgVSzJoFkdApZ/zA31jAnV9lChoBmgJaA9DCP2+f/Pi5B3AlIaUUpRoFUsyaBZHQKWfuWsRxtJ1fZQoaAZoCWgPQwgDsWzmkBQgwJSGlFKUaBVLMmgWR0Cln31Li++NdX2UKGgGaAloD0MIzy7f+rB+D8CUhpRSlGgVSzJoFkdApaFC9GqgiHV9lChoBmgJaA9DCAtdiUD1lybAlIaUUpRoFUsyaBZHQKWg/qv/zat1fZQoaAZoCWgPQwi38LxUbGwewJSGlFKUaBVLMmgWR0CloMRTCLuQdX2UKGgGaAloD0MIGHeDaK2IDsCUhpRSlGgVSzJoFkdApaCISUTtcHV9lChoBmgJaA9DCFbSim8oDBbAlIaUUpRoFUsyaBZHQKWiQ0Jng511fZQoaAZoCWgPQwgwZktWRZgdwJSGlFKUaBVLMmgWR0Clof71h9b5dX2UKGgGaAloD0MIEyo4vCASEcCUhpRSlGgVSzJoFkdApaHEeCCjDnV9lChoBmgJaA9DCDjcR25NihnAlIaUUpRoFUsyaBZHQKWhiChew9t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8338b625e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8338b5fc00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680748852908787846, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjpLJPmobjrtv1wk/jpLJPmobjrtv1wk/jpLJPmobjrtv1wk/jpLJPmobjrtv1wk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9enGP8u7qz9vQJC/hFopveEtmb9WbxA/TpJgP4mkR74jaN2/sCm/PzwMjb+CLWG+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACOksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2Oksk+ahuOu2/XCT9C/189s1vGuYDGQj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]\n [ 0.39369625 -0.00433676 0.5384435 ]]", "desired_goal": "[[ 1.5540148 1.3416685 -1.1269664 ]\n [-0.04134609 -1.1967126 0.56419885]\n [ 0.87723243 -0.19496359 -1.7297405 ]\n [ 1.4934597 -1.1019359 -0.21990016]]", "observation": "[[ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]\n [ 3.9369625e-01 -4.3367641e-03 5.3844351e-01 5.4686792e-02\n -3.7833824e-04 4.7552586e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAfVGBvUDNBr7+AjE98ouZPb29XD3B2Yo+4WI+PfQnrD3LSY89/sMAvbQJoD3pjB4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06314371 -0.13164234 0.04321574]\n [ 0.07497396 0.05389189 0.27119258]\n [ 0.04648102 0.08406058 0.06996497]\n [-0.03143691 0.07814351 0.1548344 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYtnMIamF77+UhpRSlIwBbJRLMowBdJRHQKb4R2USqVB1fZQoaAZoCWgPQwjKiXYVUn7ov5SGlFKUaBVLMmgWR0Cm+Ayf16E8dX2UKGgGaAloD0MIteBFX0Fa/L+UhpRSlGgVSzJoFkdApvfQuM+/xnV9lChoBmgJaA9DCHvBpzl5UQHAlIaUUpRoFUsyaBZHQKb3krZrYXh1fZQoaAZoCWgPQwjUuDe/YaLnv5SGlFKUaBVLMmgWR0Cm+VPhybQUdX2UKGgGaAloD0MIQpPEknJ3+b+UhpRSlGgVSzJoFkdApvkZCx/us3V9lChoBmgJaA9DCFTm5hvRPfi/lIaUUpRoFUsyaBZHQKb43Ra5f+l1fZQoaAZoCWgPQwgjEK/rF2z5v5SGlFKUaBVLMmgWR0Cm+J8mKIi1dX2UKGgGaAloD0MI+x9grdo1AMCUhpRSlGgVSzJoFkdApvpUTYdyUHV9lChoBmgJaA9DCKjjMQOVMfK/lIaUUpRoFUsyaBZHQKb6GYUnG851fZQoaAZoCWgPQwhSSZ2AJsLkv5SGlFKUaBVLMmgWR0Cm+d16eGwidX2UKGgGaAloD0MI0nDK3Hzj8L+UhpRSlGgVSzJoFkdApvmfT5O8CnV9lChoBmgJaA9DCGagMv59Rum/lIaUUpRoFUsyaBZHQKb7xD+BH091fZQoaAZoCWgPQwi69C9JZQoBwJSGlFKUaBVLMmgWR0Cm+4qG+K0ldX2UKGgGaAloD0MIoBnEB3a8+r+UhpRSlGgVSzJoFkdApvtP2PDHfnV9lChoBmgJaA9DCLcIjPUNDArAlIaUUpRoFUsyaBZHQKb7EwhW5pd1fZQoaAZoCWgPQwiPb+8a9CUAwJSGlFKUaBVLMmgWR0Cm/ZWXsw+MdX2UKGgGaAloD0MIJEOOrWeI5L+UhpRSlGgVSzJoFkdApv1bm+0w8HV9lChoBmgJaA9DCMyXF2AfnQDAlIaUUpRoFUsyaBZHQKb9IJswco91fZQoaAZoCWgPQwisjhzpDEzxv5SGlFKUaBVLMmgWR0Cm/OM9jgAIdX2UKGgGaAloD0MIuMzpspjY+r+UhpRSlGgVSzJoFkdApv9IUYbbUXV9lChoBmgJaA9DCApMp3UbVPK/lIaUUpRoFUsyaBZHQKb/DiBoVVR1fZQoaAZoCWgPQwgQIa6cvbPrv5SGlFKUaBVLMmgWR0Cm/tMbNr0rdX2UKGgGaAloD0MIHomXp3MlA8CUhpRSlGgVSzJoFkdApv6Vw3o9tHV9lChoBmgJaA9DCFga+FENGwTAlIaUUpRoFUsyaBZHQKcBGC7K7qZ1fZQoaAZoCWgPQwgEWU+tvrrgv5SGlFKUaBVLMmgWR0CnAN6Ei+tbdX2UKGgGaAloD0MIK8B3mzdO6b+UhpRSlGgVSzJoFkdApwCjdnCfpXV9lChoBmgJaA9DCGDKwAEt3fi/lIaUUpRoFUsyaBZHQKcAZm4iHIp1fZQoaAZoCWgPQwg6CDpa1ZLuv5SGlFKUaBVLMmgWR0CnAuRq46OpdX2UKGgGaAloD0MIiC09murJ+b+UhpRSlGgVSzJoFkdApwKqrJbMYHV9lChoBmgJaA9DCBQJpppZiwTAlIaUUpRoFUsyaBZHQKcCb6a9bot1fZQoaAZoCWgPQwh5Wn7gKs/1v5SGlFKUaBVLMmgWR0CnAjL0Bfa6dX2UKGgGaAloD0MI1nQ90XXh4L+UhpRSlGgVSzJoFkdApwS1RP420nV9lChoBmgJaA9DCLwgIjXtIvW/lIaUUpRoFUsyaBZHQKcEey1NQCV1fZQoaAZoCWgPQwgyIeaSqu37v5SGlFKUaBVLMmgWR0CnBD+yAxzrdX2UKGgGaAloD0MIUz9vKlKBBMCUhpRSlGgVSzJoFkdApwQChpQDWHV9lChoBmgJaA9DCP2FHjF67uy/lIaUUpRoFUsyaBZHQKcF63y7PIJ1fZQoaAZoCWgPQwjnxvSEJR71v5SGlFKUaBVLMmgWR0CnBbEKE385dX2UKGgGaAloD0MIYU87/DWZA8CUhpRSlGgVSzJoFkdApwV1RaX8fnV9lChoBmgJaA9DCNzxJr9FRwHAlIaUUpRoFUsyaBZHQKcFN4DcM3J1fZQoaAZoCWgPQwjZlZaRek/rv5SGlFKUaBVLMmgWR0CnBvhrWRRudX2UKGgGaAloD0MImfIhqBq9+b+UhpRSlGgVSzJoFkdApwa9nXd0rHV9lChoBmgJaA9DCJTcYROZOem/lIaUUpRoFUsyaBZHQKcGgbjLjgh1fZQoaAZoCWgPQwi8PJ0rSknxv5SGlFKUaBVLMmgWR0CnBkOP/7zkdX2UKGgGaAloD0MI76oHzEOm8L+UhpRSlGgVSzJoFkdApwgFHtnf23V9lChoBmgJaA9DCCiCOA8n8AXAlIaUUpRoFUsyaBZHQKcHyl6Z6Ut1fZQoaAZoCWgPQwhZxLDDmBQAwJSGlFKUaBVLMmgWR0CnB45xR2r5dX2UKGgGaAloD0MIsyRATS1b5b+UhpRSlGgVSzJoFkdApwdQaNuLrHV9lChoBmgJaA9DCHvYCwVsB++/lIaUUpRoFUsyaBZHQKcJDg4Otnx1fZQoaAZoCWgPQwhCX3r7c1Hkv5SGlFKUaBVLMmgWR0CnCNOPeYUndX2UKGgGaAloD0MITl5kAn6N77+UhpRSlGgVSzJoFkdApwiXjMmnfnV9lChoBmgJaA9DCAsL7gc8MO+/lIaUUpRoFUsyaBZHQKcIWZfD1oR1fZQoaAZoCWgPQwjDRlm/mRgBwJSGlFKUaBVLMmgWR0CnChlh5PdmdX2UKGgGaAloD0MIVHB4QUSqBMCUhpRSlGgVSzJoFkdApwnemDUVjHV9lChoBmgJaA9DCK36XG3FfvW/lIaUUpRoFUsyaBZHQKcJopc5bQl1fZQoaAZoCWgPQwgVi98UVir6v5SGlFKUaBVLMmgWR0CnCWSPuG9IdX2UKGgGaAloD0MISYJwBRTq8b+UhpRSlGgVSzJoFkdApwsl2TxG2HV9lChoBmgJaA9DCMxgjEgUmva/lIaUUpRoFUsyaBZHQKcK6xubZvl1fZQoaAZoCWgPQwjqQNZTq6/wv5SGlFKUaBVLMmgWR0CnCq8KXv6TdX2UKGgGaAloD0MIT5SERNrmAMCUhpRSlGgVSzJoFkdApwpxGnXNDHV9lChoBmgJaA9DCKxxNh0B3Py/lIaUUpRoFUsyaBZHQKcMMKl54W11fZQoaAZoCWgPQwhvgm+aPrvlv5SGlFKUaBVLMmgWR0CnC/XtjTa1dX2UKGgGaAloD0MII/Qz9bpF6L+UhpRSlGgVSzJoFkdApwu5z3h4uHV9lChoBmgJaA9DCHl3ZKw2v/m/lIaUUpRoFUsyaBZHQKcLe+cpb2V1fZQoaAZoCWgPQwjRIAVPIZfwv5SGlFKUaBVLMmgWR0CnDTgYP5HmdX2UKGgGaAloD0MIBU8hV+pZ/7+UhpRSlGgVSzJoFkdApwz9grpaBHV9lChoBmgJaA9DCNmvO915AgHAlIaUUpRoFUsyaBZHQKcMwV+I/JN1fZQoaAZoCWgPQwjTMecZ+5L8v5SGlFKUaBVLMmgWR0CnDINygf2cdX2UKGgGaAloD0MI9ntinSofBcCUhpRSlGgVSzJoFkdApw5RlBhQWXV9lChoBmgJaA9DCFgBvtu8cQnAlIaUUpRoFUsyaBZHQKcOFtaY/ml1fZQoaAZoCWgPQwiQvd798d7vv5SGlFKUaBVLMmgWR0CnDdrhR64UdX2UKGgGaAloD0MIsaNxqN+lAMCUhpRSlGgVSzJoFkdApw2c70WdmXV9lChoBmgJaA9DCN0jm6vmWQLAlIaUUpRoFUsyaBZHQKcPV6XSjQB1fZQoaAZoCWgPQwgZqfdUTrv6v5SGlFKUaBVLMmgWR0CnDxzkQwsYdX2UKGgGaAloD0MIoKUr2EY87b+UhpRSlGgVSzJoFkdApw7g9aEBbXV9lChoBmgJaA9DCLyuX7Abtvu/lIaUUpRoFUsyaBZHQKcOowFC9h91fZQoaAZoCWgPQwjHL7yS5Lnfv5SGlFKUaBVLMmgWR0CnEGE8A7xNdX2UKGgGaAloD0MISSu+ofDZAMCUhpRSlGgVSzJoFkdApxAmfwqiGnV9lChoBmgJaA9DCHP3OT5anPq/lIaUUpRoFUsyaBZHQKcP6mG/N7l1fZQoaAZoCWgPQwhGsdzSakjqv5SGlFKUaBVLMmgWR0CnD6xgAp8XdX2UKGgGaAloD0MIdLaA0Hp45r+UhpRSlGgVSzJoFkdApxFv13+uNnV9lChoBmgJaA9DCH44SIjyRQDAlIaUUpRoFUsyaBZHQKcRNQGfPHF1fZQoaAZoCWgPQwh1q+ek903wv5SGlFKUaBVLMmgWR0CnEPjVpbljdX2UKGgGaAloD0MIvR5Mio/P87+UhpRSlGgVSzJoFkdApxC6sEJSi3V9lChoBmgJaA9DCM+kTdU90gHAlIaUUpRoFUsyaBZHQKcSebIcR151fZQoaAZoCWgPQwix+bg2VKwEwJSGlFKUaBVLMmgWR0CnEj70OEuhdX2UKGgGaAloD0MI6ukj8Icf+7+UhpRSlGgVSzJoFkdApxIC/mDDj3V9lChoBmgJaA9DCCF3EaYoF+O/lIaUUpRoFUsyaBZHQKcRxRjz7Mx1fZQoaAZoCWgPQwjyzTY3pgcEwJSGlFKUaBVLMmgWR0CnE3whfShKdX2UKGgGaAloD0MIiQtAo3SJAMCUhpRSlGgVSzJoFkdApxNBbnoxH3V9lChoBmgJaA9DCAzqW+Z0Gfy/lIaUUpRoFUsyaBZHQKcTBUsFt9B1fZQoaAZoCWgPQwhhqMMKt/zsv5SGlFKUaBVLMmgWR0CnEscxKxs3dX2UKGgGaAloD0MI7MIPzqcO6r+UhpRSlGgVSzJoFkdApxSBwXIlt3V9lChoBmgJaA9DCJSD2QQYVvS/lIaUUpRoFUsyaBZHQKcURv1DjR51fZQoaAZoCWgPQwgktVAyObX1v5SGlFKUaBVLMmgWR0CnFAryc0+DdX2UKGgGaAloD0MItmlsrwU9AcCUhpRSlGgVSzJoFkdApxPNC5VfeHV9lChoBmgJaA9DCNbG2Akvwf2/lIaUUpRoFUsyaBZHQKcVgmv4dp91fZQoaAZoCWgPQwhbJO1GH5MFwJSGlFKUaBVLMmgWR0CnFUeJP69CdX2UKGgGaAloD0MIsky/RLw187+UhpRSlGgVSzJoFkdApxULaZhKDnV9lChoBmgJaA9DCFsjgnFwqfm/lIaUUpRoFUsyaBZHQKcUzZZjhDR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.634015116887167, "std_reward": 0.71160540044484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T03:37:46.884019"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9c1cd48352e270d8713a5b78babc4ec835732fd62c00cdaa77116b007b744b2
|
3 |
size 3056
|