I
a.sigma orme
g FANTOM

FANTOM

Fantom Contract Review

Version: 2.0

Contents

Introduction
Disclaimer e e
Document Structure L e e e e
OVeIVIBW . . . o e e e e e

Audit Summary
Per-Contract Vulnerability Summary e

Detailed Findings

Summary of Findings
An inactive owner can permanently locktokens.
owner or wallet recipient can minttokensforfree.
Misleading total supply.
Unintended token burning due to invalidation of _to in transfer functions.
ERC20 standard compliance.
Gas SaAVINES. .« . o i i e e e e e
Miscellaneous notes and comments. L e e e

A Test Suite

B Vulnerability Severity Classification

Fantom Contract Review Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the smart contract FantomToken ,
which governs both the Fantom Initial Coin Offering (ICO) and the dynamics of the Fantom (FTM) token. The
review focused solely on the security aspects of the Solidity implementation of the contract, but also includes
general recommendations and informational comments relating to minimizing gas usage, token functionality and
ERC20 compliance.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Prime does
not provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgements
on, or provides any security review regarding, the underlying business model or the individuals involved in the
project.

Document Structure

The first section provides an overview of the functionality of the contract (FantomToken) contained within the
scope of the security review. A summary followed by a detailed review of the discovered vulnerabilities is then
given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closed
status and a recommendation. Additionally, findings which do not have direct security implications (but are
potentially of interest) are marked as “informational”. Outputs of automated testing that were developed during
this assessment are also included for reference (in the Appendix: Test Suite).

The appendix provides additional documentation, including the severity matrix used to classify vulnerabilities
within the FantomToken contract.

Overview

The FantomToken contract serves multiple purposes, namely it

e Dictates the protocols by which Fantom tokens (FTMs or fantoms) can be purchased through Fantom'’s
Initial Coin Offering (ICO).

e Governs the dynamics of the fantom tokens, which are ERC20 [1] tokens.

e Allows the contract owner to mint tokens and assign them to arbitrary recipients. The number of tokens
minted is constrained such that the total supply of fantoms cannot exceed TOKEN_TOTAL_SUPPLY .

o Allows the contract owner to time-lock newly minted fantom tokens.

e Allows fantom holders to migrate their fantom holdings when Fantom’s DAG-based platform is opera-
tional (at an as-yet unspecified date).

A minimum amount of 0.5 ether is required to participate in Fantom’s ICO and, for every ether contributed
to the ICO, the number of fantoms received by participants is specified by the variable tokensPerEth .

Technically speaking, the “migration” achieved by the FantomToken contract amounts to burning fantoms .

Token burning events are indexed, allowing Fantom to track them and subsequently issue Fantom’s native token
(valid on the Fantom platform), to fantom holders, in proportion to the amount of fantoms burnt by the holder.

. .
Q@ sigmaprime Page | 2

Fantom Contract Review Introduction

It is emphasised that FantomToken does not contain any development relating to, or provide any functionality
for, Fantom’s DAG-based platform. The contract relates solely to the Ethereum based ERC20 fantom token. For
additional details regarding Fantom's DAG-based platform the reader is directed to the Fantom Whitepaper [2].

I . .
QT sigmaprime Page | 3

Fantom Contract Review Audit Summary

Audit Summary

This review was initially conducted on commit fdébaOc, which contains the sole file FantomToken.sol. This file
contains a number of contracts, all of which are inherited (directly or indirectly) by the FantomToken contract.

The complete list of contracts contained in FantomToken.sol is as follows:

L— FantomToken.sol
— SafeMath

— Utils

— Owned

— Wallet

— ERC20Interface
— ERC20Token

— LockSlots

—— FantomIcoDates
— FantomToken

The final version of this review targets commit 1a7313c.

Per-Contract Vulnerability Summary
SafeMath (FantomToken.sol)

Some informational notes are given.

No potential vulnerabilities have been identified.

Utils (FantomToken.sol)

Some informational notes are given.

No potential vulnerabilities have been identified.

Owned (FantomToken.sol)

No potential vulnerabilities have been identified.

Wallet (FantomToken.sol)

No potential vulnerabilities have been identified.

ERC20Interface (FantomToken.sol)

No potential vulnerabilities have been identified.

O" sigmaprime

ERC20Token (FantomToken.sol)

Some gas-saving modifications are suggested.
No potential vulnerabilities have been identified.

LockSlots (FantomToken. sol)

Some gas-saving modifications are suggested.
No potential vulnerabilities have been identified.

FantomlcoDates (FantomToken.sol)

Some informational notes are given.
No potential vulnerabilities have been identified.

FantomToken (FantomToken.sol)

Some informational notes are given.

Some gas-saving modifications are suggested.
All raised issues were resolved.

No further vulnerabilities were identified.

Page | 4

https://github.com/Fantom-foundation/tokensale/commit/fd6ba0ce529222c7df6199a586edfc16a6a8913c
https://github.com/Fantom-foundation/tokensale/commit/1a7313c7d5da489db2e72a1aa20b2cf38c8fe363

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Fantom smart contracts.
Each vulnerability has a severity classification which is determined from the likelihood and impact of each issue
by the matrix given in the Appendix: Vulnerability Severity Classification.

A number of additional properties of the contracts, including gas optimisations, are also described in this section
and are labelled as “informational”.

ID
FTM-01
FTM-02

FTM-03
FTM-04

FTM-05
FTM-06

FTM-07

Summary of Findings

Description Severity
An inactive owner can permanently lock tokens.

owner or wallet recipient can mint tokens for free.

Misleading total supply.

Unintended token burning due to invalidation of _to in transfer func-
tions.

ERC20 standard compliance.
Gas savings.

Miscellaneous notes and comments.

Status

Resolved
Resolved

Resolved
Resolved

Resolved
Resolved

Resolved

Fantom Contract Review Detailed Findings

FTM-01 An inactive owner can permanently lock tokens.

Asset FantomToken.sol

Status Closed: Resolved in [259b162]

Rating Severity: Medium Impact: High Likelihood: Low
Description

Fantom tokens become tradeable after the boolean state variable tokensTradeable is set to true . Failure
to set this variable to true means that no trading/transferring of tokens is possible. Only the contract owner

can modify tokensTradeable by calling the function makeTradeable() atthe conclusion of the ICO period.
However, if the owner was unable to access their private key, due to e.g. error or incapacitation, it would not
be possible to set tokensTradeable = true and fantom tokens would remain permanently untransferable.
This vulnerability provides a single point of failure that is capable of permanently paralysing all fantoms .

Recommendations

There are a number of ways to remove this single point of failure. One technique is to include a mechanism
that allows other users to set the tokensTradeable variable to true after a period of time. For example,

the makeTradeable() function could remove the onlyOwner modifier and add a require() of the form

require(msg.sender == owner || atNow() > dateMainEnd + 3 weeks); .

| .
Q@ sigmaprime Page | 7

https://github.com/Fantom-foundation/tokensale/commit/259b1620ec0afd2cf911fcc8ba276a202da9c86b

Fantom Contract Review Detailed Findings

FTM-02 owner Or wallet recipient can mint tokens for free.

Asset FantomToken.sol

Status Closed: See the Resolution.

Rating Severity: Medium Impact: High Likelihood: Low
Description

The owner has the ability to call the setWallet() function at any time without restriction. The wallet
address immediately receives all ether that is deposited into the FantomToken contract.

This allows the owner orthe wallet beneficiary to cyclically purchase tokens during the crowdsale. Consider
the cycle: wallet user buys tokens using 100 ether . The 100 ether is immediately returned to the user

and the user is credited with tokens. The user repeats this process, accumulating tokens for free.

Equivalently, the owner during the crowdsale, can change the wallet address to themselves, purchase tokens
a number of times, then change the wallet address back.

Although the owner can already mint tokens for free, they are capped to TOKEN_TOTAL_SUPPLY - TOKEN_MAIN_CAP .
This vulnerability allows the owner to mint tokens for free, including the amount specified by TOKEN_MAIN_CAP .

This is a low likelihood attack as only the owner or designated wallet address can perform this attack.

Note: The level of trust on the owner may be acceptable for the authors of this crowdsale. This issue is raised as
potential investors can be diluted in the event of a malicious owner, or if an attacker gains control of the wallet or
owner’s private keys.

Recommendations

Only allow the ether purchased in the crowdsale to be withdrawn once the crowdsale has completed.

Resolution

As only a small portion of funds are being raised via the crowdsale, the likelihood and the impact of this issue
are low and therefore no action was deemed necessary.

I . .
QT sigmaprime Page | 8

Fantom Contract Review Detailed Findings

FTM-03 Misleading total supply.

Asset FantomToken.sol
Status Closed: See the Resolution.
Rating Severity: Low Impact: Low Likelihood: Low

Description

The totalSupply() function does not report tokens which have not yet been minted. This is misleading as the
owner may, at any time, mint their total allocation and place them on the market for sale.

Metrics which calculate market capitalisation based upon totalSupply() would not be accurate until the mo-

ment that the owner mints the tokens, which, as discussed, could be the same moment the tokens are placed
on the market. Such a discrepancy in market capitalisation would be significant — in the most extreme case
the naive market capitalisation could increase by a factor of two-thirds, an event which may cause investors to
hastily re-evaluate their positions.

Recommendations

Ensure the totalSupply() function returns the amount of tokens sold during the crowd-sale, plus all tokens
available for minting.

Resolution

No action was deemed necessary for this issue.

I . .
QT sigmaprime Page | 9

Fantom Contract Review Detailed Findings

FTM-04 Unintended token burning due to invalidation of _to in transfer functions.

Asset FantomToken.sol

Status Closed: Resolved in commit [c5339bd]

Rating Severity: Low Impact: Low Likelihood: Medium
Description

The _to field in transfer events is not checked for the 0x0 address. External third-party applications which

implement the ERC20 interface may interpret no-input in ERC20 fields as 0. Thus users can quite easily inad-
vertently send tokens to the 0x0 address by forgetting to add a _to address in their third-party application.

This is evident by the large number of tokens currently associated with the 0x0 address.

Recommendations

It is increasingly common for ERC20 tokens to include measures that ensure transfers to the 0x0 address are
not possible. Validation of the _to field is recommended. This can be implemented in the transfer() and

transferFrom() functions in the ERC20Token contract or in the analogous functions in the Fantomtoken
contract (as the latter call the former).

I . .
QT sigmaprime Page | 10

https://github.com/Fantom-foundation/tokensale/commit/c5339bdf185c9b65524fc82d5de619365a049213

Fantom Contract Review Detailed Findings

FTM-05 ERC20 standard compliance.

Asset FantomToken.sol
Status Closed: Resolved in commit [211a517]
Rating Informational

Description

This section details the compliance with the ERC20 Standard [1] and adds any additional ERC20-related notes.
Non-compliance with the ERC20 standard does not pose any security risk, however may cause issues with third-
party applications which expect the standard.

The FantomToken contract complies with the ERC20 token standard with the following discrepancies:
e The decimals variable in FantomToken isa uint256 rather than the specified uint8.

It should also be noted, that the ERC20 implementation has a known vulnerability to front-running in the
approve() function [3].

Recommendations

Modify the decimals type to comply with the standard.
Be aware of the front-running issues in approve() , potentially add extended approve functions which are

not vulnerable to the front-running vulnerability for future third-party-applications. See the Open-Zeppelin [4]
solution for an example.

I . .
QT sigmaprime Page | 11

https://github.com/Fantom-foundation/tokensale/commit/211a517620968ff94f36eb595e611a3dac590d06

Fantom Contract Review Detailed Findings

FTM-06 Gas savings.

Asset FantomToken.sol

Status Closed

Rating Informational
Description

This section is informational and describes gas savings that could be implemented in the contract. Action need
not be taken.

Unnecessary Variable Initialisation - Initializing a variable to its default value is unnecessary and expensive
(an extra 5000 gas for storage variables).

- The storage variable, uint tokensIssuedTotal is explicitly initialised to zero on line [164].
v Resolved in commit [e41ale3]

- The uint tokens_to_transfer is explicitly initialised to zero on line [617].
v Resolved in commit [e41ale3]

- The uint i counter is explicitly initialised to zero on lines [233], [286], [445], [618] and [624].
v Resolved in commit [2e70f75]

uint8 State Variable - The EVM functions on 32 byte word sizes. It's typically more expensive to perform
operations on types smaller than this.

- The state variable LOCK_SLOTS is designated as a uint8 on line [217]. Specifying this variable as a

uint (equivalently, uint256) will save gas. Reading storage is also expensive. It would be cheaper
to store LOCK_SLOTS in memory.

v Resolved in commit [e41ale3]

Redundant require - The statement require(balances[msg.sender] >= _amount) on line [177] is

redundant. The use of SafeMath subtraction on line [178] ensures that this condition is satisfied and that
failure to satisfy this condition also triggers a revert . Removing this require would save gas. Similar

statements apply to line [191] and line [192]. (An analogous use of require appears in the Open Zepplin

implementation because they use assert in their SafeMath , which consumes all transaction gas if the
assert fails. However, the FantomToken implementation of SafeMath does not use assert .)
v Resolved in commit [e41ale3]

Redundant Specification of Return Variable - Adding a name to a return value initialises the variable in
memory. Unused return variables waste gas. This is done on lines [172], [176], [184], [190], and [200].
v Resolved in commit [2e70f75]

Calling internal Functions Has Gas Overhead - Calling functions internally uses more gas than simply
executing the code within the function.

I . .
QT sigmaprime Page | 12

https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/2e70f758f52d75643b08a9e43b8c0d860a9b9446
https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/2e70f758f52d75643b08a9e43b8c0d860a9b9446

Fantom Contract Review Detailed Findings

- atNow() is used extensively and can be replaced by now throughout the code to save gas. For
testing, it is often convenient to set times in the constructor and shift the timestamp of the testing
blockchain (i.e. ganache) during the tests (see this reports accompanying tests for an example).

v Resolved in commit [e41ale3]

- checkDateOrder() is a function used on lines [311], [326] and [333]. This can be replaced by a
modifier of the form:

modifier checkDateOrder {
require (dateMainStart < dateMainEnd) ;
require (dateMainEnd < DATE_LIMIT);

3

v Resolved in commit [e41ale3]

o Unnecessary loop during transferMultiple() - The loop beginning on [618] is not required to detect

insufficient sender balance. A revert will be caused by the first transfer() to exceed sender balance,
negating all other transfers in that call.
v Resolved in commit [1eab44b]

I . .
QT sigmaprime Page | 13

https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/e41a1e3b14d43a2d3a49bc55f4f0e0d2ce07f05f
https://github.com/Fantom-foundation/tokensale/commit/1eab44b42bf035203000c25241d62a9c6743def0

Fantom Contract Review Detailed Findings

FTM-07 Miscellaneous notes and comments.

Asset FantomToken.sol
Status Closed: All notes were acknowledged.
Rating Informational

Description

This section details miscellaneous informational aspects found within the contract. Actions need not be taken,
this is mainly for author’s reference.

e balance0f Mapping ignores locked tokens - Users will experience a discrepancy between the num-
ber of tokens they own (displayed by third party applications, i.e. mist, myetherwallet, etc), given by the
balance0f () function, and the number of tokens they can transfer. This discrepancy arises because

balance0f does not account for locked tokens. Thus, for example, a user may see a balance of ‘100 to-
kens' but performing a transfer of this many tokens will result in an unexpected ‘revert’. The user has to
explicitly lookup unlockedTokens() in order to find how many are transferable.

e Ambiguous Event Index - The IcoDateUpdated event defined on line [307] contains an id parameter.
The IcoDateUpdated event is triggered on line [327] and line [334] but in both cases the value id=1 is
specified. The id does not appear to serve any purpose. v Resolved in commit [e599a4f]

e Clearer Number Representation - The constants defined on lines [375] and [376] can be represented more
clearly using scientific notation, i.e. 1000000000 = 1e9.

¢ Naming of Unit Variables Is Misleading - The functions ethToTokens() and tokensToEth() have mis-
leading names, including the parameter _eth . One would assume values of dimension ether are passed
to these functions, when in fact, wei is being passed an 18 order of magnitude difference.

e Decimal mathematics is only valid for decimals = 18 - The function ethToTokens() takes wei as a

parameter and multiplies by tokensPerEth . This only retrieves the correct answer, because weiPerEth
is 10e18 which gives the correct decimal places for tokens (i.e. 10e18). If decimals is changed in the

future to a value other than 18 the ethToTokens() and tokensToEth() functions will return incorrect
results.

¢ Fallback Uses More Than 2300 gas - By putting the buyTokens() function in the fallback, this restricts
any contracts from sending ether to this contract viaa transfer() call which has a stipend of 2300 gas .

e Gas Usage - The deployment of this contract requires a decent amount of gas, namely ~ 5M (unoptimized)
and 3M (optimized). The registerLockedTokens() function loops through and modifies storage vari-

ables and as such is quite expensive. A call to pMintTokens() costs around 250,000 gas (optimized).
Purchasing tokens costs around 150,000 gas (optimized). See Test Suite for further gas estimations.

I . .
QT sigmaprime Page | 14

https://github.com/Fantom-foundation/tokensale/commit/e599a4fc43c08c79c2b000008973e7751eee4a49

Fantom Contract Review Detailed Findings

e Mint Type - There is a concept of “mint type”, expressed through the TokensMinted event and the
balancesMintedByType mapping. This concept is not documented (e.g., what are valid mint types and

what do the integers reference?). Furthermore, storing an extra mapping will consume significant gas and a
tally of mints-by-type could be generated by reading only the mintType parameter of the TokensMinted

events. We also question the necessity of some flag which is controlled only by the owner and has no
effect on the contract logic.

¢ Inconsistent use of p prefix - The buyTokens() functionis private, yet it is not prefixed with a p

like all other private functions. E.g., pBuyTokens() .

Recommendations

Ensure these are as expected.

I . .
QT sigmaprime Page | 15

Fantom Contract Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this docu-
ment. The truffle framework was used to perform these tests and the output is given below.

Contract: StandardToken
total supply
v returns the total amount of tokens immediately after deployment
balanceOf
when the requested account has no tokens
v/ returns zero
when the requested account has some tokens
v returns the total amount of tokens
transfer
when the recipient is not the zero address
when the sender does not have enough balance
v reverts
when the sender has enough balance
v transfers the requested amount (43ms)
v/ emits a transfer event (50ms)
when the recipient is the zero address
v reverts
approve
when the spender is not the zero address
when the sender has enough balance
v/ emits an approval event
when there was no approved amount before
v/ approves the requested amount
when the spender had an approved amount
v/ approves the requested amount and replaces the previous one
when the sender does not have enough balance
v/ emits an approval event
when there was no approved amount before
v/ approves the requested amount
when the spender had an approved amount
v/ approves the requested amount and replaces the previous one
when the spender is the zero address
v/ approves the requested amount
v/ emits an approval event
transfer from
when the recipient is not the zero address
when the spender has enough approved balance
when the owner has enough balance
v/ transfers the requested amount (46ms)
v/ decreases the spender allowance
v/ emits a transfer event
when the owner does not have enough balance
v/ reverts

I . .
QT sigmaprime Page | 16

Fantom Contract Review Test Suite

when the spender does not have enough approved balance
when the owner has enough balance
vV reverts
when the owner does not have enough balance
v/ reverts
when the recipient is the zero address
v reverts

Contract: LockSlots
v [isAvailableLockSlot] should return true for account no locked slot
(496ms)
v [mintTokensLocked] should lock correct number of tokens (560ms)
v [mintTokensLockedMultiple] mint the correct amount of locked tokens
(492ms)
v [mintTokensLockedMultiple] number of lockslots fill correctly (547ms)
v [mintTokens] should not lock the tokens (461ms)

Contract: FantomICODates
v should not allow public to change dates (418ms)
v should allow owner to change the dates (554ms)
v should not allow owner to change dates into past (449ms)

v should not allow owner to set start date after or equal to end date
(657ms)

v [mainsale] should detect main period (2785ms)

Contract: Gas Consumption Tests (optimized-runs = 200)
Deployment Gas Estimate: 2822138
v Deployment of contract gas estimate (539ms)
Buy Tokens Gas Estimate: 158469

v should cost less than the block gas limit to buy tokens (optimize-runs
= 200) (943ms)

Minting Locked Tokens Gas Estimate: 248405
v should cost less than the block gas limit to mint tokens (optimize-
runs = 200) (642ms)

Minting locked tokens for 2 accounts. Gas Estimate: 342063
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 2 accounts (684ms)

Minting locked tokens for 5 accounts. Gas Estimate: 616483
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 5 accounts (800ms)

Minting locked tokens for 10 accounts. Gas Estimate: 1073913
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 10 accounts (829ms)

Minting locked tokens for 15 accounts. Gas Estimate: 1531281
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 15 accounts (1093ms)

Minting locked tokens for 20 accounts. Gas Estimate: 1988586
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 20 accounts (1148ms)

I . .
QT sigmaprime Page | 17

Fantom Contract Review Test Suite

Minting locked tokens for 30 accounts. Gas Estimate: 2903326
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 30 accounts (1286ms)

Minting locked tokens for 50 accounts. Gas Estimate: 4732688
v [MintTokensLockedMultiple] should cost less than the block gas limit
for 50 accounts (1544ms)

Multiple transfer to 2 accounts. Gas Estimate: 70343
v [TransferMultiple] should cost less than the block gas limit for 2
accounts (888ms)

Multiple transfer to 5 accounts. Gas Estimate: 118703
v [TransferMultiple] should cost less than the block gas limit for 5
accounts (1008ms)

Multiple transfer to 10 accounts. Gas Estimate: 199303
v [TransferMultiple] should cost less than the block gas limit for 10
accounts (985ms)

Multiple transfer to 15 accounts. Gas Estimate: 279903
v [TransferMultiple] should cost less than the block gas limit for 15
accounts (1189ms)

Multiple transfer to 20 accounts. Gas Estimate: 360439
v [TransferMultiple] should cost less than the block gas limit for 20
accounts (1282ms)

Multiple transfer to 30 accounts. Gas Estimate: 521575
v [TransferMultiple] should cost less than the block gas limit for 30
accounts (1254ms)

Multiple transfer to 50 accounts. Gas Estimate: 843783
v [TransferMultiple] should cost less than the block gas limit for 50
accounts (1261ms)

Contract: [FantomToken - Token Math]
v should have the correct caps (425ms)
v should have a correct token rate for 1 ether (865ms)
v should not give more tokens than allowed during first day (1238ms)
v a user should not be able to purchase more than the token limit in the
first day (1098ms)
v should purchase correct amount of tokens if all whitelisted users
purchase tokens (1319ms)
v [Scenario.l] should give the correct token amounts for scenario 1
(1606ms)
v [Scenario 2] should give the correct token amounts for scenario 1
(1644ms)

Contract: Token Sale
when the tokensale gets completed the first day
v reverts when there is no more tokens to buy and total cap is
purchased (3047ms)
when the tokensale gets completed after the first day
v reverts when there is no more tokens to buy and total cap is
purchased (2636ms)

I . .
QT sigmaprime Page | 18

Fantom Contract Review

Test Suite

Contract: StandardToken
transferMultiple
when the recipient is not the zero address
when the sender does not have enough balance
v/ reverts
when the sender has enough balance
v/ transfers the requested amount (91ms)
v/ emits a transfer event
when the recipient is the zero address
v reverts

Contract: StandardToken TransferMultiple Extended
when tokens are not tradeable
v reverts
when the sender has enough unlocked balance
v transfers the requested amount (152ms)
v emits a transfer event (77ms)

when the sender doesn’t have enough unlocked balance

vV reverts (65ms)

66 passing (1m)

O" sigmaprime

Page | 19

Fantom Contract Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The
total severity of a vulnerability is derived from these two metrics based on the following matrix.

High Critical

Medium High

Impact

Low

Low Medium High

Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of a
vulnerability.

References

[1] ERC-20 Token Standard. Github, Available: https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-20.md.

[2] FANTOM - Whitepaper v1.3. Website, May 2018, Available: http://www.fantom.foundation/data/
FANTOM/,20Whitepaper’%20Englishj20v1.3.pdf.

[3] ERC20 API: An Attack Vector on Approve/TransferFrom Methods. Google Docs, 2018, Avail-

able: https://docs.google.com/document/d/1YLPtQxZulUAv09cZ102RPXBbTOmooh4DYKjA_jp-RLM/
edit#heading=h.m9fhqynw2xvt.

[4] OpenZeppelin StandardToken.sol. Github, 2018, Available: https://github.com/OpenZeppelin/
openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol.

I . .
Q sigmaprime Page | 20

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf
http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol

	Introduction
	Disclaimer
	Document Structure
	Overview

	Audit Summary
	Per-Contract Vulnerability Summary

	Detailed Findings
	 Summary of Findings
	An inactive push0 g 0 Gpopownercodebackgroundpush0 g 0 Gpoptowidthheightdepth can permanently lock tokens.
	push0 g 0 Gpopownercodebackgroundpush0 g 0 Gpoptowidthheightdepth or push0 g 0 Gpopwalletcodebackgroundpush0 g 0 Gpoptowidthheightdepth recipient can mint tokens for free.
	Misleading total supply.
	Unintended token burning due to invalidation of push0 g 0 Gpop_tocodebackgroundpush0 g 0 Gpoptowidthheightdepth in transfer functions.
	ERC20 standard compliance.
	Gas savings.
	Miscellaneous notes and comments.

	Test Suite
	Vulnerability Severity Classification

