
Fantom

Fantom Contract Review
Version: 1.0

June, 2018

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Audit Summary 4Per-Contract Vulnerability Summary . 4
Detailed Findings 5

Summary of Findings 5An inactive owner can permanently lock tokens. 6
owner or wallet recipient can mint tokens for free. 7Misleading total supply. 8Unintended token burning due to invalidation of _to in transfer functions. 9ERC20 Standard compliance. 10Gas savings. 11Miscellaneous notes and comments. 13

A Test Suite 15

B Vulnerability Severity Classification 19

1

Fantom Contract Review Introduction

Introduction

SigmaPrimewas commercially engaged to perform a time-boxed security reviewof the smart contract FantomToken ,which governs both the Fantom Initial Coin Offering (ICO) and the dynamics of the Fantom (FTM) token. Thereview focused solely on the security aspects of the Solidity implementation of the contract, but also includesgeneral recommendations and informational comments relating to minimizing gas usage, token functionality andERC20 compliance.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review regarding, the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the contract (FantomToken) contained within thescope of the security review. A summary followed by a detailed review of the discovered vulnerabilities is thengiven which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closedstatus and a recommendation. Additionally, findings which do not have direct security implications (but arepotentially of interest) are marked as “informational”. Outputs of automated testing that were developed duringthis assessment are also included for reference (in the Appendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the FantomToken contract.

Overview

The FantomToken contract serves multiple purposes, namely it
• Dictates the protocols by which Fantom tokens (FTMs or fantoms) can be purchased through Fantom’sInitial Coin Offering (ICO).
• Governs the dynamics of the fantom tokens, which are ERC20 [1] tokens.
• Allows the contract owner to mint tokens and assign them to arbitrary recipients. The number of tokensminted is constrained such that the total supply of fantoms cannot exceed TOKEN_TOTAL_SUPPLY .
• Allows the contract owner to time-lock newly minted fantom tokens.
• Allows fantom holders to migrate their fantom holdings when Fantom’s DAG-based platform is opera-tional (at an as-yet unspecified date).

A minimum amount of 0.5 ether is required to participate in Fantom’s ICO and, for every ether contributedto the ICO, the number of fantoms received by participants is specified by the variable tokensPerEth .
Technically speaking, the “migration” achieved by the FantomToken contract amounts to burning fantoms .Token burning events are indexed, allowing Fantom to track them and subsequently issue Fantom’s native token(valid on the Fantom platform), to fantom holders, in proportion to the amount of fantoms burnt by the holder.

Page | 2

Fantom Contract Review Introduction

It is emphasised that FantomToken does not contain any development relating to, or provide any functionalityfor, Fantom’s DAG-based platform. The contract relates solely to the Ethereum based ERC20 fantom token. Foradditional details regarding Fantom’s DAG-based platform the reader is directed to the FantomWhitepaper [2].

Page | 3

Fantom Contract Review Audit Summary

Audit Summary

This review was conducted on commit fd6ba0ce529222c7df6199a586edfc16a6a8913c, which contains thesole file FantomToken.sol. This file contains a number of contracts, all of which are inherited (directly or indirectly)by the FantomToken contract. The complete list of contracts contained in FantomToken.sol is as follows:
FantomToken.sol

SafeMath
Utils
Owned
Wallet
ERC20Interface
ERC20Token
LockSlots
FantomIcoDates
FantomToken

Per-Contract Vulnerability Summary

SafeMath (FantomToken.sol)

Some informational notes are given.No potential vulnerabilities have been identified.
Utils (FantomToken.sol)

Some informational notes are given.No potential vulnerabilities have been identified.
Owned (FantomToken.sol)

No potential vulnerabilities have been identified.
Wallet (FantomToken.sol)

No potential vulnerabilities have been identified.
ERC20Interface (FantomToken.sol)

No potential vulnerabilities have been identified.
ERC20Token (FantomToken.sol)

Some gas-saving modifications are suggested.No potential vulnerabilities have been identified.

LockSlots (FantomToken.sol)

Some gas-saving modifications are suggested.No potential vulnerabilities have been identified.
FantomIcoDates (FantomToken.sol)

Some informational notes are given.No potential vulnerabilities have been identified.
FantomToken (FantomToken.sol)

Some informational notes are given.Some gas-saving modifications are suggested.The following vulnerabilities were identified:
• If the owner of the FantomToken contractbecomes incapacitated or loses their keys, the

fantom tokens may not be tradeable, renderingthem useless.
• No validation of the _to field in the ERC20transfer functions, allow token transfers to acci-dentally be sent to the 0x0 address. Note thatthis validation could be implemented in either of

ERC20Token or FantomToken .

Page | 4

https://github.com/Fantom-foundation/tokensale/commit/fd6ba0ce529222c7df6199a586edfc16a6a8913c

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the client Fantom smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.

Summary of Findings

ID Description Severity
FTM-01 An inactive owner can permanently lock tokens. Medium

FTM-02 owner or wallet recipient can mint tokens for free. Medium

FTM-03 Misleading total supply. Medium

FTM-04 Unintended token burning due to invalidation of _to in transfer func-tions. Low

FTM-05 ERC20 Standard compliance. Informational

FTM-06 Gas savings. Informational

FTM-07 Miscellaneous notes and comments. Informational

5

Fantom Contract Review Detailed Findings

FTM-01 An inactive owner can permanently lock tokens.
Asset FantomToken.sol
Rating Severity: Medium Impact: High Likelihood: Low
Status Open

Description

Fantom tokens become tradeable after the boolean state variable tokensTradeable is set to true . Failureto set this variable to true means that no trading/transferring of tokens is possible. Only the contract owner
can modify tokensTradeable by calling the function makeTradeable() at the conclusion of the ICO period.However, if the owner was unable to access their private key, due to e.g. error or incapacitation, it would notbe possible to set tokensTradeable = true and fantom tokens would remain permanently untransferable.This vulnerability provides a single point of failure that is capable of permanently paralysing all fantoms .

Recommendations

There are a number of ways to remove this single point of failure. One technique is to include a mechanismthat allows other users to set the tokensTradeable variable to true after a period of time. For exam-
ple, the makeTradeable() function could remove the onlyOwner modifier and add a require for the form
require(msg.sender == owner || atNow() > dateMainEnd + 3 weeks); .

Page | 6

Fantom Contract Review Detailed Findings

FTM-02 owner or wallet recipient can mint tokens for free.
Asset FantomToken.sol
Rating Severity: Medium Impact: High Likelihood: Low
Status Open

Description

The owner has the ability to call the setWallet() function at any time without restriction. The wallet
address immediately receives all ether that is deposited into the FantomToken contract.
This allows the owner or the wallet beneficiary to cyclically purchase tokens during the crowdsale. Considerthe cycle: wallet user buys tokens using 100 ether . The 100 ether is immediately returned to the userand the user is credited with tokens. The user repeats this process, accumulating tokens for free.
Equivalently, the owner during the crowdsale, can change the wallet address to themselves, purchase tokensa number of times, then change the wallet address back.
Although the owner can alreadymint tokens for free, they are capped to TOKEN_TOTAL_SUPPLY - TOKEN_MAIN_CAP .
This vulnerability allows the owner to mint tokens for free, including the amount specified by TOKEN_MAIN_CAP .
This is a low likelihood attack as only the owner or designated wallet address can perform this attack.
Note: The level of trust on the owner may be acceptable for the authors of this crowdsale. This issue is raised as
potential investors can be diluted in the event of a malicious owner, or if an attacker gains control of the wallet or
owner’s private keys.

Recommendations

Only allow the ether purchased in the crowdsale to be withdrawn once the crowdsale has completed.

Page | 7

Fantom Contract Review Detailed Findings

FTM-03 Misleading total supply.
Asset FantomToken.sol
Rating Severity: Medium Impact: High Likelihood: Low
Status Open

Description

The totalSupply() function does not report tokens which have not yet been minted. This is misleading as the
owner may, at any time, mint their total allocation and place them on the market for sale.
Metrics which calculate market capitalisation based upon totalSupply() would not be accurate until the mo-
ment that the owner mints the tokens, which, as discussed, could be the same moment the tokens are placedon the market. Such a discrepancy in market capitalisation would be significant — in the most extreme casethe naive market capitalisation could increase by a factor of two-thirds, an event which may cause investors tohastily re-evaluate their positions.
We would consider it reasonable for not-yet-minted tokens to be excluded from totalSupply() if there were
some restrictions placed upon theminting of those tokens (e.g., time-based or some effort was required to unlockthem). However, given that not-yet-minted tokens are simply a single function call away from being transferable,we consider it imperative that they are included in the totalSupply() count.

Recommendations

Ensure the totalSupply() function returns the amount of tokens sold during the crowd-sale, plus all tokens
available for minting.
If it is desired to keep track of the number of tokens which have been minted, store that in a separate variable(e.g., tokensMintedTotal).

Page | 8

Fantom Contract Review Detailed Findings

FTM-04 Unintended token burning due to invalidation of _to in transfer functions.
Asset FantomToken.sol
Rating Severity: Low Impact: Low Likelihood: Medium
Status Open

Description

The _to field in transfer events is not checked for the 0x0 address. External third-party applications which
implement the ERC20 interface may interpret no-input in ERC20 fields as 0 . Thus users can quite easily inad-vertently send tokens to the 0x0 address by forgetting to add a _to address in their third-party application.
This is evident by the large number of tokens currently associated with the 0x0 address.

Recommendations

It is increasingly common for ERC20 tokens to include measures that ensure transfers to the 0x0 address are
not possible. Validation of the _to field is recommended. This can be implemented in the transfer() and
transferFrom() functions in the ERC20Token contract or in the analogous functions in the Fantomtokencontract (as the latter call the former).

Page | 9

Fantom Contract Review Detailed Findings

FTM-05 ERC20 Standard compliance.
Asset FantomToken.sol
Rating Informational
Status Open

Description

This section details the compliance with the ERC20 Standard [1] and adds any additional ERC20-related notes.Non-compliance with the ERC20 standard does not pose any security risk, however may cause issues with third-party applications which expect the standard.
The FantomToken contract complies with the ERC20 token standard with the following discrepancies:

• The decimals variable in FantomToken is a uint256 rather than the specified uint8 .
It should also be noted, that the ERC20 implementation has a known vulnerability to front-running in the
approve() function [3].

Recommendations

Modify the decimals type to comply with the standard.
Be aware of the front-running issues in approve() , potentially add extended approve functions which are
not vulnerable to the front-running vulnerability for future third-party-applications. See the Open-Zeppelin [4]solution for an example.

Page | 10

Fantom Contract Review Detailed Findings

FTM-06 Gas savings.
Asset FantomToken.sol
Rating Informational
Status Open

Description

This section is informational and describes gas savings that could be implemented in the contract. Action neednot be taken.

• Unnecessary Variable Initialisation - Initializing a variable to its default value is unnecessary and expensive(an extra 5000 gas for storage variables).
– The storage variable, uint tokensIssuedTotal is explicitly initialised to zero on line [164].
– The uint tokens_to_transfer is explicitly initialised to zero on line [617].
– The uint i counter is explicitly initialised to zero on lines [233], [286], [445], [618] and [624].

• RedundantMapping - Themapping balancesMain , defined on line [388] and used on lines [534] and [554],replicates the functionality of the mapping balances and appears redundant. On line [534] the usage of
balancesMain occurs within a statement that checks if(isMainFirstDay() = true) . Whenever this
condition holds, balances[msg.sender] = balancesMain[msg.sender] . Thus,
balances[msg.sender] can be used in place of balancesMain[msg.sender] on line [534].
Similarly, the operations performed on balancesMain[msg.sender] on line [554] are identical to the op-
erations performed on balances[msg.sender] on line [553]. Consequently, at all times prior to triggering
the condition tokensTradable = true , balances[msg.sender] = balancesMain[msg.sender] . The
condition tokensTradeable = true can only be triggered by the function makeTradeable() when
atNow() > dateMainEnd . At this point, balancesMain can no longer be accessed at line [534] and any
subsequent differences between balancesMain[msg.sender] and balances[msg.sender] appear re-
dundant. Note that balancesMain is a state variable that is, accordingly, stored in storage . This incurs
a considerable gas cost. Removing this mapping will save gas.

• uint8 State Variable - The EVM functions on 32 byteword sizes. It’s typically more expensive to performoperations on types smaller than this.
– The state variable LOCK_SLOTS is designated as a uint8 on line [217]. Specifying this variable as a

uint (equivalently, uint256) will save gas. Reading storage is also expensive. It would be cheaperto store LOCK_SLOTS in memory.
• Redundant require - The statement require(balances[msg.sender] >= _amount) on line [177] is

redundant. The use of SafeMath subtraction on line [178] ensures that this condition is satisfied and thatfailure to satisfy this condition also triggers a revert . Removing this require would save gas. Similar
statements apply to line [191] and line [192]. (An analogous use of require appears in the Open Zepplin
implementation because they use assert in their SafeMath , which consumes all transaction gas if theassert fails. However, the FantomToken implementation of SafeMath does not use assert .)

Page | 11

Fantom Contract Review Detailed Findings

• Redundant Specification of Return Variable - Adding a name to a return value initialises the variable inmemory. Unused return variables waste gas. This is done on lines [172], [176], [184], [190], and [200].
• Calling lnternal Functions Has Gas Overhead - Calling functions internally uses more gas than simplyexecuting the code within the function.

– AtNow() is used extensively and can be replaced by now throughout the code to save gas. Fortesting, it is often convenient to set times in the constructor and shift the timestamp of the testingblockchain (i.e. ganache) during the tests (see this reports accompanying tests for an example).
– checkDateOrder() is a function used on lines [311], [326] and [333]. This can be replaced by amodifier of the form:

modifier checkDateOrder {
_;
require (dateMainStart < dateMainEnd);
require (dateMainEnd < DATE_LIMIT);

}

• Unnecessary loop during transferMultiple() - The loop beginning on [618] is not required to detect
insufficient sender balance. A revert will be caused by the first transfer() to exceed sender balance,negating all other transfers in that call.

Page | 12

Fantom Contract Review Detailed Findings

FTM-07 Miscellaneous notes and comments.
Asset FantomToken.sol
Rating Informational
Status Open

Description

This section details miscellaneous informational aspects found within the contract. Actions need not be taken,this is mainly for author’s reference.

• balanceOf Mapping ignores locked tokens - Users will experience a discrepancy between the num-ber of tokens they own (displayed by third party applications, i.e. mist, myetherwallet, etc), given by the
balanceOf() function, and the number of tokens they can transfer. This discrepancy arises because
balanceOf does not account for locked tokens. Thus, for example, a user may see a balance of ‘100 to-kens‘ but performing a transfer of this many tokens will result in an unexpected ‘revert‘. The user has toexplicitly lookup unlockedTokens() in order to find how many are transferable.

• Ambiguous Event Index - The IcoDateUpdated event defined on line [307] contains an id parameter.
The IcoDateUpdated event is triggered on line [327] and line [334] but in both cases the value id=1 is
specified. The id does not appear to serve any purpose.

• Clearer Number Representation - The constants defined on lines [375] and [376] can be represented moreclearly using scientific notation, i.e. 1000000000 = 1e9 .
• Naming of Unit Variables Is Misleading - The functions ethToTokens() and tokensToEth() have mis-

leading names, including the parameter _eth . One would assume values of dimension ether are passed
to these functions, when in fact, wei is being passed an 18 order of magnitude difference.

• Decimal mathematics is only valid for decimals = 18 - The function ethToTokens() takes wei as a
parameter and multiplies by tokensPerEth . This only retrieves the correct answer, because weiPerEthis 10e18 which gives the correct decimal places for tokens (i.e. 10e18). If decimals is changed in the
future to a value other than 18 the ethToTokens() and tokensToEth() functions will return incorrectresults.

• Fallback Uses More Than 2300 gas - By putting the buyTokens() function in the fallback, this restricts
any contracts from sending ether to this contract via a transfer() call which has a stipend of 2300 gas .

• Gas Usage - The deployment of this contract requires a decent amount of gas, namely≈ 5M (unoptimized)
and 3M (optimized). The registerLockedTokens() function loops through and modifies storage vari-
ables and as such is quite expensive. A call to pMintTokens() costs around 250,000 gas (optimized).
Purchasing tokens costs around 150,000 gas (optimized). See Test Suite for further gas estimations.

• Mint Type - There is a concept of “mint type”, expressed through the TokensMinted event and the
balancesMintedByType mapping. This concept is not documented (e.g., what are valid mint types and
what do the integers reference?). Furthermore, storing an extra mapping will consume significant gas and atally of mints-by-type could be generated by reading only the mintType parameter of the TokensMinted
events. We also question the necessity of some flag which is controlled only by the owner and has noeffect on the contract logic.

Page | 13

Fantom Contract Review Detailed Findings

• Inconsistent use of p prefix - The buyTokens() function is private , yet it is not prefixed with a p

like all other private functions. E.g., pBuyTokens() .

Recommendations

Ensure these are as expected.

Page | 14

Fantom Contract Review Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this docu-ment. The truffle framework was used to perform these tests and the output is given below.
Contract : StandardToken

total supply
3 returns the total amount of tokens immediately after deployment

balanceOf
when the requested account has no tokens

3 returns zero
when the requested account has some tokens

3 returns the total amount of tokens
transfer

when the recipient is not the zero address
when the sender does not have enough balance

3 reverts
when the sender has enough balance

3 transfers the requested amount (76 ms)
3 emits a transfer event

when the recipient is the zero address
1) reverts

Events emitted during test:

Whitelisted (account : <indexed >, countWhitelisted : 1)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 100)
TokensMinted (mintType : <indexed >, account : <indexed >, tokens : 100, term:
0)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 100)

approve

when the spender is not the zero address
when the sender has enough balance

3 emits an approval event
when there was no approved amount before

3 approves the requested amount (43 ms)
when the spender had an approved amount

3 approves the requested amount and replaces the previous one
when the sender does not have enough balance

3 emits an approval event
when there was no approved amount before

3 approves the requested amount (55 ms)
when the spender had an approved amount

3 approves the requested amount and replaces the previous one
when the spender is the zero address

3 approves the requested amount
3 emits an approval event

transfer from
when the recipient is not the zero address

when the spender has enough approved balance
when the owner has enough balance

3 transfers the requested amount (38 ms)

Page | 15

Fantom Contract Review Test Suite

3 decreases the spender allowance (51 ms)
3 emits a transfer event

when the owner does not have enough balance
3 reverts

when the spender does not have enough approved balance
when the owner has enough balance

3 reverts
when the owner does not have enough balance

3 reverts
when the recipient is the zero address

2) reverts

Events emitted during test:

Whitelisted (account : <indexed >, countWhitelisted : 1)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 100)
TokensMinted (mintType : <indexed >, account : <indexed >, tokens : 100, term:
0)
Approval (\ _owner : <indexed >, \ _spender : <indexed >, \ _value : 100)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 100)

Contract : LockSlots
3 [isAvailableLockSlot] should return true for account no locked slot

(388 ms)
3 [mintTokensLocked] should lock correct number of tokens (472 ms)
3 [mintTokensLockedMultiple] mint the correct amount of locked tokens

(647 ms)
3 [mintTokensLockedMultiple] number of lockslots fill correctly (674 ms)
3 [mintTokens] should not lock the tokens (487 ms)

Contract : FantomICODates
3 should not allow public to change dates (373 ms)
3 should allow owner to change the dates (464 ms)
3 should not allow owner to change dates into past (417 ms)
3 should not allow owner to set start date after or equal to end date

(546 ms)
3 [mainsale] should detect main period (2600 ms)

Contract : Gas Consumption Tests (optimized -runs = 200)
Deployment Gas Estimate : 2927102

3 Deployment of contract gas estimate (504 ms)
Buy Tokens Gas Estimate : 158328

3 should cost less than the block gas limit to buy tokens (optimize -runs
= 200) (839 ms)

Minting Locked Tokens Gas Estimate : 248540
3 should cost less than the block gas limit to mint tokens (optimize -

runs = 200) (622 ms)
Minting locked tokens for 2 accounts . Gas Estimate : 342383

3 [MintTokensLockedMultiple] should cost less than the block gas limit
for 2 accounts (758 ms)

Minting locked tokens for 5 accounts . Gas Estimate : 617340
3 [MintTokensLockedMultiple] should cost less than the block gas limit

for 5 accounts (698 ms)

Page | 16

Fantom Contract Review Test Suite

Minting locked tokens for 10 accounts . Gas Estimate : 1075665
3 [MintTokensLockedMultiple] should cost less than the block gas limit

for 10 accounts (741 ms)
Minting locked tokens for 15 accounts . Gas Estimate : 1533928

3 [MintTokensLockedMultiple] should cost less than the block gas limit
for 15 accounts (899 ms)

Minting locked tokens for 20 accounts . Gas Estimate : 1992128
3 [MintTokensLockedMultiple] should cost less than the block gas limit

for 20 accounts (922 ms)
Minting locked tokens for 30 accounts . Gas Estimate : 2908658

3 [MintTokensLockedMultiple] should cost less than the block gas limit
for 30 accounts (1081 ms)

Minting locked tokens for 50 accounts . Gas Estimate : 4741600
3 [MintTokensLockedMultiple] should cost less than the block gas limit

for 50 accounts (1373 ms)
Multiple transfer to 2 accounts . Gas Estimate : 70160

3 [TransferMultiple] should cost less than the block gas limit for 2
accounts (928 ms)

Multiple transfer to 5 accounts . Gas Estimate : 116648
3 [TransferMultiple] should cost less than the block gas limit for 5

accounts (940 ms)
Multiple transfer to 10 accounts . Gas Estimate : 194128

3 [TransferMultiple] should cost less than the block gas limit for 10
accounts (941 ms)

Multiple transfer to 15 accounts . Gas Estimate : 271608
3 [TransferMultiple] should cost less than the block gas limit for 15

accounts (890 ms)
Multiple transfer to 20 accounts . Gas Estimate : 349024

3 [TransferMultiple] should cost less than the block gas limit for 20
accounts (941 ms)

Multiple transfer to 30 accounts . Gas Estimate : 503920
3 [TransferMultiple] should cost less than the block gas limit for 30

accounts (1139 ms)
Multiple transfer to 50 accounts . Gas Estimate : 813648

3 [TransferMultiple] should cost less than the block gas limit for 50
accounts (1120 ms)

Contract : [FantomToken - Token Math]
3 should have the correct caps (387 ms)
3 should have a correct token rate for 1 ether (871 ms)
3 should not give more tokens than allowed during first day (849 ms)
3 a user should not be able to purchase more than the token limit in the
first day (879 ms)
3 should purchase the main total cap if every whitelisted users send

ether over their cap (1132 ms)
3 [Scenario 1] should give the correct token amounts for scenario 1

(1629 ms)
3 [Scenario 2] should give the correct token amounts for scenario 1

(1586 ms)

Contract : StandardToken
transferMultiple

when the recipient is not the zero address
when the sender does not have enough balance

3 reverts
when the sender has enough balance

Page | 17

Fantom Contract Review Test Suite

3 transfers the requested amount (79 ms)
3 emits a transfer event (38 ms)

when the recipient is the zero address
3) reverts

Events emitted during test:

Whitelisted (account : <indexed >, countWhitelisted : 1)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 100)
TokensMinted (mintType : <indexed >, account : <indexed >, tokens : 100, term:
0)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 50)
Transfer (\ _from: <indexed >, _to: <indexed >, \ _value : 50)

57 passing (56s)
3 failing

Page | 18

Fantom Contract Review Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] ERC-20 Token Standard. Github, Available: https://github.com/ethereum/EIPs/blob/master/EIPS/
eip-20.md.

[2] FANTOM - Whitepaper v1.3. Website, May 2018, Available: http://www.fantom.foundation/data/
FANTOM%20Whitepaper%20English%20v1.3.pdf.

[3] ERC20 API: An Attack Vector on Approve/TransferFrom Methods. Google Docs, 2018, Avail-able: https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/
edit#heading=h.m9fhqynw2xvt.

[4] OpenZeppelin StandardToken.sol. Github, 2018, Available: https://github.com/OpenZeppelin/
openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol.

Page | 19

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf
http://www.fantom.foundation/data/FANTOM%20Whitepaper%20English%20v1.3.pdf
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol

	Introduction
	Disclaimer
	Document Structure
	Overview

	Audit Summary
	Per-Contract Vulnerability Summary

	Detailed Findings
	 Summary of Findings
	An inactive push0 g 0 Gpopownercodebackgroundpush0 g 0 Gpoptowidthheightdepth can permanently lock tokens.
	push0 g 0 Gpopownercodebackgroundpush0 g 0 Gpoptowidthheightdepth or push0 g 0 Gpopwalletcodebackgroundpush0 g 0 Gpoptowidthheightdepth recipient can mint tokens for free.
	Misleading total supply.
	Unintended token burning due to invalidation of push0 g 0 Gpop_tocodebackgroundpush0 g 0 Gpoptowidthheightdepth in transfer functions.
	ERC20 Standard compliance.
	Gas savings.
	Miscellaneous notes and comments.

	Test Suite
	Vulnerability Severity Classification

