Add new SentenceTransformer model
Browse files- 0_MMContextEncoder/config.json +9 -0
- 0_MMContextEncoder/model.safetensors +3 -0
- README.md +613 -0
- config_sentence_transformers.json +10 -0
- modules.json +8 -0
0_MMContextEncoder/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"text_encoder_name": "pritamdeka/S-BioBert-snli-multinli-stsb",
|
3 |
+
"omics_input_dim": 64,
|
4 |
+
"processor_obsm_key": "X_pca",
|
5 |
+
"freeze_text_encoder": true,
|
6 |
+
"unfreeze_last_n_layers": 1,
|
7 |
+
"adapter_hidden_dim": 512,
|
8 |
+
"adapter_output_dim": 2048
|
9 |
+
}
|
0_MMContextEncoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:081f0609dda1fd7be3d60a0516c748a50c2f77e7832537f797955f305d73af81
|
3 |
+
size 443446304
|
README.md
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- code
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:94500
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
widget:
|
12 |
+
- source_sentence: Primary CD8+ T cells from a subject identified as CL-MCRL, exposed
|
13 |
+
to the GPR epitope with a dpi (days post-infection) of 87.5.
|
14 |
+
sentences:
|
15 |
+
- Cancer cell line (CCL23) derived from a carcinoma patient.
|
16 |
+
- Primary CD34+ human cells in three-phase in vitro culture, isolated on day 13,
|
17 |
+
with GG1dd zf vector transduction.
|
18 |
+
- 23-year-old primary nonETP leukemic blasts from bone marrow.
|
19 |
+
- source_sentence: Hematopoietic cells with PI-AnnexinV-GFP+CD33+ phenotype from a
|
20 |
+
xenograft strain NRG-3GS.
|
21 |
+
sentences:
|
22 |
+
- H9 embryonic stem cells treated with recombinant Wnt3a for 8 hours in culture.
|
23 |
+
- iCell Hepatocytes that have been treated with 075\_OLBO\_10 in a study involving
|
24 |
+
BO class and dose 10.
|
25 |
+
- 48 hour treatment of colorectal carcinoma cell line HCT116 (colorectal cancer)
|
26 |
+
with control treatment.
|
27 |
+
- source_sentence: Memory B cells derived from a female thoracic lymph node, obtained
|
28 |
+
from a donor in their seventh decade.
|
29 |
+
sentences:
|
30 |
+
- Neuron cell type from the Pulvinar of thalamus, derived from a 42-year-old human
|
31 |
+
individual.
|
32 |
+
- Germinal center B cell derived from the tonsil tissue of a 3-year-old male with
|
33 |
+
recurrent tonsillitis.
|
34 |
+
- B cell sample from a 55-year old female Asian individual with managed systemic
|
35 |
+
lupus erythematosus (SLE). The cell was derived from peripheral blood mononuclear
|
36 |
+
cells (PBMCs).
|
37 |
+
- source_sentence: Pericyte cells, part of the smooth muscle lineage, extracted from
|
38 |
+
the transition zone of a 74-year-old human prostate.
|
39 |
+
sentences:
|
40 |
+
- A CD8-positive, alpha-beta memory T cell, CD45RO-positive, specifically identified
|
41 |
+
as Tem/Effector cytotoxic T cells, as determined by CellTypist prediction. The
|
42 |
+
cell was obtained from the lung tissue of a female individual in her eighth decade.
|
43 |
+
- CD4-positive, alpha-beta T cell sample taken from a 53-year old female Asian individual
|
44 |
+
with managed systemic lupus erythematosus (SLE).
|
45 |
+
- Natural killer cell from a 32-year old female of European descent with managed
|
46 |
+
systemic lupus erythematosus (SLE).
|
47 |
+
- source_sentence: Sample is a basal cell of prostate epithelium, taken from the transition
|
48 |
+
zone of the prostate gland in a 72-year old male. It belongs to the Epithelia
|
49 |
+
lineage and Population BE.
|
50 |
+
sentences:
|
51 |
+
- Neuron cell type from a 42-year old male cerebral cortex tissue, specifically
|
52 |
+
from the rostral gyrus dorsal division of MFC A32, classified as Deep-layer corticothalamic
|
53 |
+
and 6b.
|
54 |
+
- Dendritic cell from the transition zone of prostate of a 29-year-old male, specifically
|
55 |
+
from the EREG+ population.
|
56 |
+
- Neuron from the mediodorsal nucleus of thalamus, which is part of the medial nuclear
|
57 |
+
complex of thalamus (MNC) in the thalamic complex, taken from a 42-year-old male
|
58 |
+
human donor with European ethnicity. The neuron belongs to the Thalamic excitatory
|
59 |
+
supercluster.
|
60 |
+
datasets:
|
61 |
+
- jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation
|
62 |
+
- jo-mengr/geo_70k_multiplets_natural_language_annotation
|
63 |
+
pipeline_tag: sentence-similarity
|
64 |
+
library_name: sentence-transformers
|
65 |
+
metrics:
|
66 |
+
- cosine_accuracy
|
67 |
+
model-index:
|
68 |
+
- name: SentenceTransformer
|
69 |
+
results:
|
70 |
+
- task:
|
71 |
+
type: triplet
|
72 |
+
name: Triplet
|
73 |
+
dataset:
|
74 |
+
name: Unknown
|
75 |
+
type: unknown
|
76 |
+
metrics:
|
77 |
+
- type: cosine_accuracy
|
78 |
+
value: 0.9402857422828674
|
79 |
+
name: Cosine Accuracy
|
80 |
+
- type: cosine_accuracy
|
81 |
+
value: 0.9371428489685059
|
82 |
+
name: Cosine Accuracy
|
83 |
+
---
|
84 |
+
|
85 |
+
# SentenceTransformer
|
86 |
+
|
87 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained on the [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) and [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) datasets. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
88 |
+
|
89 |
+
## Model Details
|
90 |
+
|
91 |
+
### Model Description
|
92 |
+
- **Model Type:** Sentence Transformer
|
93 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
94 |
+
- **Maximum Sequence Length:** None tokens
|
95 |
+
- **Output Dimensionality:** None dimensions
|
96 |
+
- **Similarity Function:** Cosine Similarity
|
97 |
+
- **Training Datasets:**
|
98 |
+
- [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation)
|
99 |
+
- [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation)
|
100 |
+
- **Language:** code
|
101 |
+
<!-- - **License:** Unknown -->
|
102 |
+
|
103 |
+
### Model Sources
|
104 |
+
|
105 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
106 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
107 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
108 |
+
|
109 |
+
### Full Model Architecture
|
110 |
+
|
111 |
+
```
|
112 |
+
SentenceTransformer(
|
113 |
+
(0): MMContextEncoder(
|
114 |
+
(text_encoder): BertModel(
|
115 |
+
(embeddings): BertEmbeddings(
|
116 |
+
(word_embeddings): Embedding(28996, 768, padding_idx=0)
|
117 |
+
(position_embeddings): Embedding(512, 768)
|
118 |
+
(token_type_embeddings): Embedding(2, 768)
|
119 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
120 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
121 |
+
)
|
122 |
+
(encoder): BertEncoder(
|
123 |
+
(layer): ModuleList(
|
124 |
+
(0-11): 12 x BertLayer(
|
125 |
+
(attention): BertAttention(
|
126 |
+
(self): BertSdpaSelfAttention(
|
127 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
128 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
129 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
130 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
131 |
+
)
|
132 |
+
(output): BertSelfOutput(
|
133 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
134 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
(intermediate): BertIntermediate(
|
139 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
140 |
+
(intermediate_act_fn): GELUActivation()
|
141 |
+
)
|
142 |
+
(output): BertOutput(
|
143 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
)
|
149 |
+
)
|
150 |
+
(pooler): BertPooler(
|
151 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
152 |
+
(activation): Tanh()
|
153 |
+
)
|
154 |
+
)
|
155 |
+
(text_adapter): AdapterModule(
|
156 |
+
(net): Sequential(
|
157 |
+
(0): Linear(in_features=768, out_features=512, bias=True)
|
158 |
+
(1): ReLU(inplace=True)
|
159 |
+
(2): Linear(in_features=512, out_features=2048, bias=True)
|
160 |
+
(3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
161 |
+
)
|
162 |
+
)
|
163 |
+
(omics_adapter): AdapterModule(
|
164 |
+
(net): Sequential(
|
165 |
+
(0): Linear(in_features=64, out_features=512, bias=True)
|
166 |
+
(1): ReLU(inplace=True)
|
167 |
+
(2): Linear(in_features=512, out_features=2048, bias=True)
|
168 |
+
(3): BatchNorm1d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
169 |
+
)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
)
|
173 |
+
```
|
174 |
+
|
175 |
+
## Usage
|
176 |
+
|
177 |
+
### Direct Usage (Sentence Transformers)
|
178 |
+
|
179 |
+
First install the Sentence Transformers library:
|
180 |
+
|
181 |
+
```bash
|
182 |
+
pip install -U sentence-transformers
|
183 |
+
```
|
184 |
+
|
185 |
+
Then you can load this model and run inference.
|
186 |
+
```python
|
187 |
+
from sentence_transformers import SentenceTransformer
|
188 |
+
|
189 |
+
# Download from the 🤗 Hub
|
190 |
+
model = SentenceTransformer("jo-mengr/mmcontext-100k-natural_language_annotation-pca-1024")
|
191 |
+
# Run inference
|
192 |
+
sentences = [
|
193 |
+
'Sample is a basal cell of prostate epithelium, taken from the transition zone of the prostate gland in a 72-year old male. It belongs to the Epithelia lineage and Population BE.',
|
194 |
+
'Neuron cell type from a 42-year old male cerebral cortex tissue, specifically from the rostral gyrus dorsal division of MFC A32, classified as Deep-layer corticothalamic and 6b.',
|
195 |
+
'Neuron from the mediodorsal nucleus of thalamus, which is part of the medial nuclear complex of thalamus (MNC) in the thalamic complex, taken from a 42-year-old male human donor with European ethnicity. The neuron belongs to the Thalamic excitatory supercluster.',
|
196 |
+
]
|
197 |
+
embeddings = model.encode(sentences)
|
198 |
+
print(embeddings.shape)
|
199 |
+
# [3, 1024]
|
200 |
+
|
201 |
+
# Get the similarity scores for the embeddings
|
202 |
+
similarities = model.similarity(embeddings, embeddings)
|
203 |
+
print(similarities.shape)
|
204 |
+
# [3, 3]
|
205 |
+
```
|
206 |
+
|
207 |
+
<!--
|
208 |
+
### Direct Usage (Transformers)
|
209 |
+
|
210 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
211 |
+
|
212 |
+
</details>
|
213 |
+
-->
|
214 |
+
|
215 |
+
<!--
|
216 |
+
### Downstream Usage (Sentence Transformers)
|
217 |
+
|
218 |
+
You can finetune this model on your own dataset.
|
219 |
+
|
220 |
+
<details><summary>Click to expand</summary>
|
221 |
+
|
222 |
+
</details>
|
223 |
+
-->
|
224 |
+
|
225 |
+
<!--
|
226 |
+
### Out-of-Scope Use
|
227 |
+
|
228 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
229 |
+
-->
|
230 |
+
|
231 |
+
## Evaluation
|
232 |
+
|
233 |
+
### Metrics
|
234 |
+
|
235 |
+
#### Triplet
|
236 |
+
|
237 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
238 |
+
|
239 |
+
| Metric | Value |
|
240 |
+
|:--------------------|:-----------|
|
241 |
+
| **cosine_accuracy** | **0.9403** |
|
242 |
+
|
243 |
+
#### Triplet
|
244 |
+
|
245 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
246 |
+
|
247 |
+
| Metric | Value |
|
248 |
+
|:--------------------|:-----------|
|
249 |
+
| **cosine_accuracy** | **0.9371** |
|
250 |
+
|
251 |
+
<!--
|
252 |
+
## Bias, Risks and Limitations
|
253 |
+
|
254 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
255 |
+
-->
|
256 |
+
|
257 |
+
<!--
|
258 |
+
### Recommendations
|
259 |
+
|
260 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
261 |
+
-->
|
262 |
+
|
263 |
+
## Training Details
|
264 |
+
|
265 |
+
### Training Datasets
|
266 |
+
|
267 |
+
#### cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation
|
268 |
+
|
269 |
+
* Dataset: [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) at [a6241c4](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation/tree/a6241c46b7e108ff9106fd7a1838117096e2c3c6)
|
270 |
+
* Size: 31,500 training samples
|
271 |
+
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
272 |
+
* Approximate statistics based on the first 1000 samples:
|
273 |
+
| | anndata_ref | positive | negative_1 | negative_2 |
|
274 |
+
|:--------|:-------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
|
275 |
+
| type | dict | string | string | dict |
|
276 |
+
| details | <ul><li></li></ul> | <ul><li>min: 53 characters</li><li>mean: 163.04 characters</li><li>max: 743 characters</li></ul> | <ul><li>min: 43 characters</li><li>mean: 163.42 characters</li><li>max: 609 characters</li></ul> | <ul><li></li></ul> |
|
277 |
+
* Samples:
|
278 |
+
| anndata_ref | positive | negative_1 | negative_2 |
|
279 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
280 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_1f1c5c14-5949-4c81-b28e-b272e271b672_570'}</code> | <code>Stromal cell of ovary, specifically Stroma-2, from a human adult female individual, in S phase of the cell cycle.</code> | <code>Neuron cell type from a 50-year-old male human thalamic complex, specifically from the ventral anterior nucleus of thalamus within the lateral nuclear complex.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_1b9d8702-5af8-4142-85ed-020eb06ec4f6_19663'}</code> |
|
281 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_34872'}</code> | <code>CD8-positive, alpha-beta T cell sample from a 52-year old Asian female with managed systemic lupus erythematosus (SLE).</code> | <code>Mucosal invariant T cell derived from the spleen of a female in her seventies.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_74cff64f-9da9-4b2a-9b3b-8a04a1598040_4145'}</code> |
|
282 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_74cff64f-9da9-4b2a-9b3b-8a04a1598040_7321'}</code> | <code>Hofbauer cell derived from the decidua basalis tissue of a female individual at 8 post conception week (8_PCW). The sample is a nucleus.</code> | <code>Regulatory T cell derived from a lymph node of a male individual with advanced non-small cell lung cancer (NSCLC), stage IV, who has a history of smoking.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cZdKEMQFMKGHc6E/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GDgf9MfckNmk2Bf/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/GWrtoRASdZAWdPa/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/FAiRMKztdjLYG23/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TDTo6seSi6qrGTq/download'}}, 'sample_id': 'census_5a73f63f-18a2-49b5-b431-2c469c41a41b_163'}</code> |
|
283 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
284 |
+
```json
|
285 |
+
{
|
286 |
+
"scale": 20.0,
|
287 |
+
"similarity_fct": "cos_sim"
|
288 |
+
}
|
289 |
+
```
|
290 |
+
|
291 |
+
#### geo_70k_multiplets_natural_language_annotation
|
292 |
+
|
293 |
+
* Dataset: [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) at [449eb79](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation/tree/449eb79e41b05af4d3e32900144411963f626f8c)
|
294 |
+
* Size: 63,000 training samples
|
295 |
+
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
296 |
+
* Approximate statistics based on the first 1000 samples:
|
297 |
+
| | anndata_ref | positive | negative_1 | negative_2 |
|
298 |
+
|:--------|:-------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
|
299 |
+
| type | dict | string | string | dict |
|
300 |
+
| details | <ul><li></li></ul> | <ul><li>min: 21 characters</li><li>mean: 139.4 characters</li><li>max: 696 characters</li></ul> | <ul><li>min: 23 characters</li><li>mean: 142.09 characters</li><li>max: 705 characters</li></ul> | <ul><li></li></ul> |
|
301 |
+
* Samples:
|
302 |
+
| anndata_ref | positive | negative_1 | negative_2 |
|
303 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
304 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX3111576'}</code> | <code>198Z\_MSCB-067 sample contains primary cells that are neuronal progenitors from patient type WB\_1.</code> | <code>31-year-old female Caucasian with ntm disease provided a whole blood sample on July 11, 2016. The baseline FEVPP was 89.74 and FVCpp was 129.41.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX6591734'}</code> |
|
305 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX7834244'}</code> | <code>CD8+ T cells from a healthy skin sample, labeled C4, from plate rep1, well E6, sequencing batch b7, which passed QC, and clustered as 2\_Resid.</code> | <code>6-week-old (PCW6) neuronal epithelium tissue from donor HSB325, cultured using C1-72 chip.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX2440281'}</code> |
|
306 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX3112138'}</code> | <code>201Z\_MSCB-083 is a sample of primary neuronal progenitor cells from patient MD1 with no reported treatment.</code> | <code>48-hour sample from HPV-negative UPCI:SCC131 cell line, a head and neck squamous cell carcinoma (HNSCC) cell line, that has not been irradiated.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/mwyWK7cTL3j5ydA/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Tg4TMSg8gDtxJ5x/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/QjSE4s5ZHamjwfi/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/rYEATQXRJsx42Qr/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/cWgZaKPJLsgb5Zo/download'}}, 'sample_id': 'SRX7448263'}</code> |
|
307 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
308 |
+
```json
|
309 |
+
{
|
310 |
+
"scale": 20.0,
|
311 |
+
"similarity_fct": "cos_sim"
|
312 |
+
}
|
313 |
+
```
|
314 |
+
|
315 |
+
### Evaluation Datasets
|
316 |
+
|
317 |
+
#### cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation
|
318 |
+
|
319 |
+
* Dataset: [cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation) at [a6241c4](https://huggingface.co/datasets/jo-mengr/cellxgene_pseudo_bulk_35k_multiplets_natural_language_annotation/tree/a6241c46b7e108ff9106fd7a1838117096e2c3c6)
|
320 |
+
* Size: 3,500 evaluation samples
|
321 |
+
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
322 |
+
* Approximate statistics based on the first 1000 samples:
|
323 |
+
| | anndata_ref | positive | negative_1 | negative_2 |
|
324 |
+
|:--------|:-------------------|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
|
325 |
+
| type | dict | string | string | dict |
|
326 |
+
| details | <ul><li></li></ul> | <ul><li>min: 51 characters</li><li>mean: 168.27 characters</li><li>max: 829 characters</li></ul> | <ul><li>min: 57 characters</li><li>mean: 174.27 characters</li><li>max: 804 characters</li></ul> | <ul><li></li></ul> |
|
327 |
+
* Samples:
|
328 |
+
| anndata_ref | positive | negative_1 | negative_2 |
|
329 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
330 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_842c6f5d-4a94-4eef-8510-8c792d1124bc_6822'}</code> | <code>Non-classical monocyte cell type, derived from a fresh breast tissue sample of an African American female donor with low breast density, obese BMI, and premenopausal status. The cell was obtained through resection procedure and analyzed using single-cell transcriptomics as part of the Human Breast Cell Atlas (HBCA) study.</code> | <code>Plasma cells derived from gingival tissue of a 39-year-old female.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_218acb0f-9f2f-4f76-b90b-15a4b7c7f629_23461'}</code> |
|
331 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_b46237d1-19c6-4af2-9335-9854634bad16_9825'}</code> | <code>Enteric neuron cells derived from the ileum tissue at Carnegie stage 22.</code> | <code>Ciliated cell from the trachea of a 6-12 year-old European male with no SARS-CoV-2 infection, who is a non-smoker and healthy.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_2872f4b0-b171-46e2-abc6-befcf6de6306_2871'}</code> |
|
332 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_d7d7e89c-c93a-422d-8958-9b4a90b69558_4209'}</code> | <code>Activated CD16-positive, CD56-dim natural killer cell taken from a 26-year-old male, activated with CD3, and found to be in G1 phase.</code> | <code>CD8-positive, alpha-beta thymocyte cell type derived from a 74-year-old male human with European self-reported ethnicity, located in the transition zone of the prostate.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/Zk4EtWao9WKAQKc/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/LET7EG7xi56RqMd/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/5qjxiEJwwdNHTBX/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/z4TQkdxcP3ynBMn/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/6NZ94ZLkLKYyPcY/download'}}, 'sample_id': 'census_535e9336-2d8d-43c3-944d-bcbebe20df8a_18'}</code> |
|
333 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
334 |
+
```json
|
335 |
+
{
|
336 |
+
"scale": 20.0,
|
337 |
+
"similarity_fct": "cos_sim"
|
338 |
+
}
|
339 |
+
```
|
340 |
+
|
341 |
+
#### geo_70k_multiplets_natural_language_annotation
|
342 |
+
|
343 |
+
* Dataset: [geo_70k_multiplets_natural_language_annotation](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation) at [449eb79](https://huggingface.co/datasets/jo-mengr/geo_70k_multiplets_natural_language_annotation/tree/449eb79e41b05af4d3e32900144411963f626f8c)
|
344 |
+
* Size: 7,000 evaluation samples
|
345 |
+
* Columns: <code>anndata_ref</code>, <code>positive</code>, <code>negative_1</code>, and <code>negative_2</code>
|
346 |
+
* Approximate statistics based on the first 1000 samples:
|
347 |
+
| | anndata_ref | positive | negative_1 | negative_2 |
|
348 |
+
|:--------|:-------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:-------------------|
|
349 |
+
| type | dict | string | string | dict |
|
350 |
+
| details | <ul><li></li></ul> | <ul><li>min: 22 characters</li><li>mean: 138.7 characters</li><li>max: 702 characters</li></ul> | <ul><li>min: 22 characters</li><li>mean: 131.79 characters</li><li>max: 702 characters</li></ul> | <ul><li></li></ul> |
|
351 |
+
* Samples:
|
352 |
+
| anndata_ref | positive | negative_1 | negative_2 |
|
353 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
354 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX16033546'}</code> | <code>A549 lung adenocarcinoma cell line with ectopic expression of TPK1 p.G48C mutation.</code> | <code>3 days after the 4th immunization, blood sample from donor 1033 with low antibody-dependent cellular phagocytosis (ADCP) category.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX10356703'}</code> |
|
355 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX8241199'}</code> | <code>Human fibroblasts at the D7 time point during reprogramming into induced pluripotent stem cells (iPSCs) or hiPSCs.</code> | <code>CD14+ monocytes from a healthy control participant (ID 2015).</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX14140416'}</code> |
|
356 |
+
| <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX17834359'}</code> | <code>Whole blood sample from subject HRV15-017, collected at day 1 in the afternoon.</code> | <code>59 year old male bronchial epithelial cells with 39 pack years of smoking history and imaging cluster 1.</code> | <code>{'file_record': {'dataset_path': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kfjX6LkLewqssdN/download', 'embeddings': {'X_geneformer': 'https://nxc-fredato.imbi.uni-freiburg.de/s/kxd2NqJjnMSArf6/download', 'X_hvg': 'https://nxc-fredato.imbi.uni-freiburg.de/s/zqPbdqn5nCgo7rb/download', 'X_pca': 'https://nxc-fredato.imbi.uni-freiburg.de/s/b7sANypKxGyYQ2J/download', 'X_scvi': 'https://nxc-fredato.imbi.uni-freiburg.de/s/TwFF6TWRp9sMxgc/download'}}, 'sample_id': 'SRX5429074'}</code> |
|
357 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
358 |
+
```json
|
359 |
+
{
|
360 |
+
"scale": 20.0,
|
361 |
+
"similarity_fct": "cos_sim"
|
362 |
+
}
|
363 |
+
```
|
364 |
+
|
365 |
+
### Training Hyperparameters
|
366 |
+
#### Non-Default Hyperparameters
|
367 |
+
|
368 |
+
- `eval_strategy`: steps
|
369 |
+
- `per_device_train_batch_size`: 128
|
370 |
+
- `per_device_eval_batch_size`: 128
|
371 |
+
- `learning_rate`: 2e-05
|
372 |
+
- `num_train_epochs`: 8
|
373 |
+
- `warmup_ratio`: 0.1
|
374 |
+
- `fp16`: True
|
375 |
+
- `dataloader_num_workers`: 1
|
376 |
+
|
377 |
+
#### All Hyperparameters
|
378 |
+
<details><summary>Click to expand</summary>
|
379 |
+
|
380 |
+
- `overwrite_output_dir`: False
|
381 |
+
- `do_predict`: False
|
382 |
+
- `eval_strategy`: steps
|
383 |
+
- `prediction_loss_only`: True
|
384 |
+
- `per_device_train_batch_size`: 128
|
385 |
+
- `per_device_eval_batch_size`: 128
|
386 |
+
- `per_gpu_train_batch_size`: None
|
387 |
+
- `per_gpu_eval_batch_size`: None
|
388 |
+
- `gradient_accumulation_steps`: 1
|
389 |
+
- `eval_accumulation_steps`: None
|
390 |
+
- `torch_empty_cache_steps`: None
|
391 |
+
- `learning_rate`: 2e-05
|
392 |
+
- `weight_decay`: 0.0
|
393 |
+
- `adam_beta1`: 0.9
|
394 |
+
- `adam_beta2`: 0.999
|
395 |
+
- `adam_epsilon`: 1e-08
|
396 |
+
- `max_grad_norm`: 1.0
|
397 |
+
- `num_train_epochs`: 8
|
398 |
+
- `max_steps`: -1
|
399 |
+
- `lr_scheduler_type`: linear
|
400 |
+
- `lr_scheduler_kwargs`: {}
|
401 |
+
- `warmup_ratio`: 0.1
|
402 |
+
- `warmup_steps`: 0
|
403 |
+
- `log_level`: passive
|
404 |
+
- `log_level_replica`: warning
|
405 |
+
- `log_on_each_node`: True
|
406 |
+
- `logging_nan_inf_filter`: True
|
407 |
+
- `save_safetensors`: True
|
408 |
+
- `save_on_each_node`: False
|
409 |
+
- `save_only_model`: False
|
410 |
+
- `restore_callback_states_from_checkpoint`: False
|
411 |
+
- `no_cuda`: False
|
412 |
+
- `use_cpu`: False
|
413 |
+
- `use_mps_device`: False
|
414 |
+
- `seed`: 42
|
415 |
+
- `data_seed`: None
|
416 |
+
- `jit_mode_eval`: False
|
417 |
+
- `use_ipex`: False
|
418 |
+
- `bf16`: False
|
419 |
+
- `fp16`: True
|
420 |
+
- `fp16_opt_level`: O1
|
421 |
+
- `half_precision_backend`: auto
|
422 |
+
- `bf16_full_eval`: False
|
423 |
+
- `fp16_full_eval`: False
|
424 |
+
- `tf32`: None
|
425 |
+
- `local_rank`: 0
|
426 |
+
- `ddp_backend`: None
|
427 |
+
- `tpu_num_cores`: None
|
428 |
+
- `tpu_metrics_debug`: False
|
429 |
+
- `debug`: []
|
430 |
+
- `dataloader_drop_last`: False
|
431 |
+
- `dataloader_num_workers`: 1
|
432 |
+
- `dataloader_prefetch_factor`: None
|
433 |
+
- `past_index`: -1
|
434 |
+
- `disable_tqdm`: False
|
435 |
+
- `remove_unused_columns`: True
|
436 |
+
- `label_names`: None
|
437 |
+
- `load_best_model_at_end`: False
|
438 |
+
- `ignore_data_skip`: False
|
439 |
+
- `fsdp`: []
|
440 |
+
- `fsdp_min_num_params`: 0
|
441 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
442 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
443 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
444 |
+
- `deepspeed`: None
|
445 |
+
- `label_smoothing_factor`: 0.0
|
446 |
+
- `optim`: adamw_torch
|
447 |
+
- `optim_args`: None
|
448 |
+
- `adafactor`: False
|
449 |
+
- `group_by_length`: False
|
450 |
+
- `length_column_name`: length
|
451 |
+
- `ddp_find_unused_parameters`: None
|
452 |
+
- `ddp_bucket_cap_mb`: None
|
453 |
+
- `ddp_broadcast_buffers`: False
|
454 |
+
- `dataloader_pin_memory`: True
|
455 |
+
- `dataloader_persistent_workers`: False
|
456 |
+
- `skip_memory_metrics`: True
|
457 |
+
- `use_legacy_prediction_loop`: False
|
458 |
+
- `push_to_hub`: False
|
459 |
+
- `resume_from_checkpoint`: None
|
460 |
+
- `hub_model_id`: None
|
461 |
+
- `hub_strategy`: every_save
|
462 |
+
- `hub_private_repo`: False
|
463 |
+
- `hub_always_push`: False
|
464 |
+
- `gradient_checkpointing`: False
|
465 |
+
- `gradient_checkpointing_kwargs`: None
|
466 |
+
- `include_inputs_for_metrics`: False
|
467 |
+
- `eval_do_concat_batches`: True
|
468 |
+
- `fp16_backend`: auto
|
469 |
+
- `push_to_hub_model_id`: None
|
470 |
+
- `push_to_hub_organization`: None
|
471 |
+
- `mp_parameters`:
|
472 |
+
- `auto_find_batch_size`: False
|
473 |
+
- `full_determinism`: False
|
474 |
+
- `torchdynamo`: None
|
475 |
+
- `ray_scope`: last
|
476 |
+
- `ddp_timeout`: 1800
|
477 |
+
- `torch_compile`: False
|
478 |
+
- `torch_compile_backend`: None
|
479 |
+
- `torch_compile_mode`: None
|
480 |
+
- `dispatch_batches`: None
|
481 |
+
- `split_batches`: None
|
482 |
+
- `include_tokens_per_second`: False
|
483 |
+
- `include_num_input_tokens_seen`: False
|
484 |
+
- `neftune_noise_alpha`: None
|
485 |
+
- `optim_target_modules`: None
|
486 |
+
- `batch_eval_metrics`: False
|
487 |
+
- `eval_on_start`: False
|
488 |
+
- `eval_use_gather_object`: False
|
489 |
+
- `prompts`: None
|
490 |
+
- `batch_sampler`: batch_sampler
|
491 |
+
- `multi_dataset_batch_sampler`: proportional
|
492 |
+
|
493 |
+
</details>
|
494 |
+
|
495 |
+
### Training Logs
|
496 |
+
| Epoch | Step | Training Loss | cellxgene pseudo bulk 35k multiplets natural language annotation loss | geo 70k multiplets natural language annotation loss | cosine_accuracy |
|
497 |
+
|:------:|:----:|:-------------:|:---------------------------------------------------------------------:|:---------------------------------------------------:|:---------------:|
|
498 |
+
| 0.1351 | 100 | - | 19.5545 | 19.6050 | 0.5656 |
|
499 |
+
| 0.2703 | 200 | 17.2819 | 19.4888 | 17.2415 | 0.7261 |
|
500 |
+
| 0.4054 | 300 | - | 17.2527 | 14.3099 | 0.7684 |
|
501 |
+
| 0.5405 | 400 | 13.4122 | 13.1462 | 13.4371 | 0.7976 |
|
502 |
+
| 0.6757 | 500 | - | 12.6305 | 9.3601 | 0.8474 |
|
503 |
+
| 0.8108 | 600 | 8.3246 | 11.1233 | 7.6021 | 0.8787 |
|
504 |
+
| 0.9459 | 700 | - | 8.5871 | 7.6461 | 0.8980 |
|
505 |
+
| 1.0811 | 800 | 6.1203 | 7.0774 | 7.1605 | 0.9046 |
|
506 |
+
| 1.2162 | 900 | - | 6.0461 | 6.7694 | 0.9076 |
|
507 |
+
| 1.3514 | 1000 | 5.1622 | 6.1759 | 6.0741 | 0.9166 |
|
508 |
+
| 1.4865 | 1100 | - | 6.6497 | 5.3305 | 0.9269 |
|
509 |
+
| 1.6216 | 1200 | 4.7346 | 7.6330 | 4.9083 | 0.9324 |
|
510 |
+
| 1.7568 | 1300 | - | 6.5700 | 4.8609 | 0.9349 |
|
511 |
+
| 1.8919 | 1400 | 4.4577 | 6.9249 | 4.6155 | 0.9401 |
|
512 |
+
| 2.0270 | 1500 | - | 5.4120 | 5.0721 | 0.9367 |
|
513 |
+
| 2.1622 | 1600 | 4.2281 | 6.3842 | 4.6481 | 0.9407 |
|
514 |
+
| 2.2973 | 1700 | - | 5.6970 | 4.9588 | 0.9370 |
|
515 |
+
| 2.4324 | 1800 | 4.2392 | 6.3306 | 4.6888 | 0.9407 |
|
516 |
+
| 2.5676 | 1900 | - | 5.3909 | 5.0415 | 0.9364 |
|
517 |
+
| 2.7027 | 2000 | 4.2237 | 6.0779 | 4.7476 | 0.9394 |
|
518 |
+
| 2.8378 | 2100 | - | 5.3631 | 5.0280 | 0.9379 |
|
519 |
+
| 2.9730 | 2200 | 4.2215 | 5.5800 | 4.9418 | 0.9373 |
|
520 |
+
| 3.1081 | 2300 | - | 6.3898 | 4.6718 | 0.9400 |
|
521 |
+
| 3.2432 | 2400 | 4.1984 | 4.7118 | 5.4301 | 0.9313 |
|
522 |
+
| 3.3784 | 2500 | - | 7.2266 | 4.5063 | 0.9419 |
|
523 |
+
| 3.5135 | 2600 | 4.2538 | 8.1464 | 4.4121 | 0.9426 |
|
524 |
+
| 3.6486 | 2700 | - | 6.5866 | 4.6253 | 0.9409 |
|
525 |
+
| 3.7838 | 2800 | 4.2186 | 5.8797 | 4.8671 | 0.9380 |
|
526 |
+
| 3.9189 | 2900 | - | 5.5591 | 4.9559 | 0.9377 |
|
527 |
+
| 4.0541 | 3000 | 4.2064 | 6.3420 | 4.7167 | 0.9413 |
|
528 |
+
| 4.1892 | 3100 | - | 5.9561 | 4.8190 | 0.9387 |
|
529 |
+
| 4.3243 | 3200 | 4.2248 | 6.3844 | 4.6827 | 0.9410 |
|
530 |
+
| 4.4595 | 3300 | - | 7.1522 | 4.5193 | 0.9421 |
|
531 |
+
| 4.5946 | 3400 | 4.2263 | 4.8333 | 5.3410 | 0.9331 |
|
532 |
+
| 4.7297 | 3500 | - | 4.5820 | 5.5334 | 0.9306 |
|
533 |
+
| 4.8649 | 3600 | 4.2472 | 6.8254 | 4.5512 | 0.9413 |
|
534 |
+
| 5.0 | 3700 | - | 6.4904 | 4.6993 | 0.9399 |
|
535 |
+
| 5.1351 | 3800 | 4.1936 | 4.8578 | 5.3678 | 0.9344 |
|
536 |
+
| 5.2703 | 3900 | - | 6.4530 | 4.6426 | 0.9413 |
|
537 |
+
| 5.4054 | 4000 | 4.2345 | 6.6050 | 4.6684 | 0.9409 |
|
538 |
+
| 5.5405 | 4100 | - | 4.8690 | 5.3172 | 0.9334 |
|
539 |
+
| 5.6757 | 4200 | 4.2406 | 6.2903 | 4.7100 | 0.9404 |
|
540 |
+
| 5.8108 | 4300 | - | 6.6273 | 4.6269 | 0.9419 |
|
541 |
+
| 5.9459 | 4400 | 4.2227 | 5.4572 | 5.0365 | 0.9370 |
|
542 |
+
| 6.0811 | 4500 | - | 5.0242 | 5.2568 | 0.9341 |
|
543 |
+
| 6.2162 | 4600 | 4.1997 | 4.7279 | 5.5242 | 0.9316 |
|
544 |
+
| 6.3514 | 4700 | - | 5.1846 | 5.2246 | 0.9339 |
|
545 |
+
| 6.4865 | 4800 | 4.2361 | 5.8601 | 4.8249 | 0.9381 |
|
546 |
+
| 6.6216 | 4900 | - | 6.9398 | 4.5848 | 0.9423 |
|
547 |
+
| 6.7568 | 5000 | 4.2273 | 6.2977 | 4.6921 | 0.9406 |
|
548 |
+
| 6.8919 | 5100 | - | 6.9737 | 4.5439 | 0.9421 |
|
549 |
+
| 7.0270 | 5200 | 4.2052 | 5.3900 | 5.0873 | 0.9370 |
|
550 |
+
| 7.1622 | 5300 | - | 6.3929 | 4.6474 | 0.9406 |
|
551 |
+
| 7.2973 | 5400 | 4.2416 | 5.6994 | 4.9590 | 0.9371 |
|
552 |
+
| 7.4324 | 5500 | - | 6.3184 | 4.6922 | 0.9407 |
|
553 |
+
| 7.5676 | 5600 | 4.2311 | 5.3932 | 5.0403 | 0.9363 |
|
554 |
+
| 7.7027 | 5700 | - | 6.0781 | 4.7480 | 0.9394 |
|
555 |
+
| 7.8378 | 5800 | 4.229 | 5.3664 | 5.0291 | 0.9380 |
|
556 |
+
| 7.9730 | 5900 | - | 5.5803 | 4.9391 | 0.9371 |
|
557 |
+
|
558 |
+
|
559 |
+
### Framework Versions
|
560 |
+
- Python: 3.10.10
|
561 |
+
- Sentence Transformers: 3.5.0.dev0
|
562 |
+
- Transformers: 4.43.4
|
563 |
+
- PyTorch: 2.6.0+cu124
|
564 |
+
- Accelerate: 0.33.0
|
565 |
+
- Datasets: 2.14.4
|
566 |
+
- Tokenizers: 0.19.1
|
567 |
+
|
568 |
+
## Citation
|
569 |
+
|
570 |
+
### BibTeX
|
571 |
+
|
572 |
+
#### Sentence Transformers
|
573 |
+
```bibtex
|
574 |
+
@inproceedings{reimers-2019-sentence-bert,
|
575 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
576 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
577 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
578 |
+
month = "11",
|
579 |
+
year = "2019",
|
580 |
+
publisher = "Association for Computational Linguistics",
|
581 |
+
url = "https://arxiv.org/abs/1908.10084",
|
582 |
+
}
|
583 |
+
```
|
584 |
+
|
585 |
+
#### MultipleNegativesRankingLoss
|
586 |
+
```bibtex
|
587 |
+
@misc{henderson2017efficient,
|
588 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
589 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
590 |
+
year={2017},
|
591 |
+
eprint={1705.00652},
|
592 |
+
archivePrefix={arXiv},
|
593 |
+
primaryClass={cs.CL}
|
594 |
+
}
|
595 |
+
```
|
596 |
+
|
597 |
+
<!--
|
598 |
+
## Glossary
|
599 |
+
|
600 |
+
*Clearly define terms in order to be accessible across audiences.*
|
601 |
+
-->
|
602 |
+
|
603 |
+
<!--
|
604 |
+
## Model Card Authors
|
605 |
+
|
606 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
607 |
+
-->
|
608 |
+
|
609 |
+
<!--
|
610 |
+
## Model Card Contact
|
611 |
+
|
612 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
613 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.5.0.dev0",
|
4 |
+
"transformers": "4.43.4",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_MMContextEncoder",
|
6 |
+
"type": "mmcontext.models.MMContextEncoder.MMContextEncoder"
|
7 |
+
}
|
8 |
+
]
|