Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,6 @@ tags:
|
|
5 |
- food
|
6 |
- reranking
|
7 |
- sequence-classification
|
8 |
-
- text-classification
|
9 |
library_name: transformers
|
10 |
pipeline_tag: text-classification
|
11 |
license: mit
|
@@ -13,25 +12,41 @@ license: mit
|
|
13 |
|
14 |
# Food Re-ranker Model
|
15 |
|
16 |
-
This is a fine-tuned DistilBERT model trained for
|
17 |
|
18 |
-
## Model
|
19 |
|
20 |
-
|
21 |
-
- **
|
22 |
-
- **
|
|
|
23 |
- **Output**: Binary classification scores (0 = different foods, 1 = same food)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Example Usage
|
37 |
|
@@ -50,3 +65,4 @@ inputs = tokenizer(query, candidate, padding=True, truncation=True, return_tenso
|
|
50 |
# Get prediction
|
51 |
outputs = model(**inputs)
|
52 |
score = outputs.logits.softmax(dim=1)[0][1].item() # Score for positive class
|
|
|
|
5 |
- food
|
6 |
- reranking
|
7 |
- sequence-classification
|
|
|
8 |
library_name: transformers
|
9 |
pipeline_tag: text-classification
|
10 |
license: mit
|
|
|
12 |
|
13 |
# Food Re-ranker Model
|
14 |
|
15 |
+
This is a fine-tuned DistilBERT model trained for binary classification of food description pairs. The model determines whether two food descriptions refer to the same item, enabling accurate re-ranking of search results.
|
16 |
|
17 |
+
## Model Details
|
18 |
|
19 |
+
### Model Description
|
20 |
+
- **Base Model**: distilbert-base-uncased
|
21 |
+
- **Model Type**: distilbert
|
22 |
+
- **Task**: Binary classification (food description matching)
|
23 |
- **Output**: Binary classification scores (0 = different foods, 1 = same food)
|
24 |
|
25 |
+
### Architecture
|
26 |
+
- **Hidden Dimension**: 768
|
27 |
+
- **Number of Layers**: 6
|
28 |
+
- **Number of Attention Heads**: 12
|
29 |
+
- **Intermediate Size**: 3072
|
30 |
+
- **Maximum Position Embeddings**: 512
|
31 |
+
- **Vocabulary Size**: 30522
|
32 |
|
33 |
+
## Use Case
|
34 |
|
35 |
+
Designed for improving food search accuracy by re-ranking initial search results, this model:
|
36 |
+
- Takes pairs of food descriptions as input
|
37 |
+
- Determines if they refer to the same food item
|
38 |
+
- Enables more accurate matching of food descriptions
|
39 |
+
- Helps surface the most relevant matches in search results
|
40 |
|
41 |
+
## Training Configuration
|
42 |
+
- **Batch Size**: 32
|
43 |
+
- **Learning Rate**: 5e-05
|
44 |
+
- **Number of Epochs**: 3
|
45 |
+
- **Warmup Steps**: 0
|
46 |
+
- **Weight Decay**: 0.0
|
47 |
+
- **Dropout**: 0.1
|
48 |
+
- **Attention Dropout**: 0.1
|
49 |
+
- **Classification Dropout**: 0.2
|
50 |
|
51 |
## Example Usage
|
52 |
|
|
|
65 |
# Get prediction
|
66 |
outputs = model(**inputs)
|
67 |
score = outputs.logits.softmax(dim=1)[0][1].item() # Score for positive class
|
68 |
+
```
|