File size: 14,084 Bytes
8043beb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-small-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-small_tobacco3482_kd_CEKD_t2.5_a0.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-small_tobacco3482_kd_CEKD_t2.5_a0.5

This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6146
- Accuracy: 0.8
- Brier Loss: 0.2784
- Nll: 1.4268
- F1 Micro: 0.8000
- F1 Macro: 0.7846
- Ece: 0.1626
- Aurc: 0.0474

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 7    | 4.1581          | 0.18     | 0.8974     | 4.2254 | 0.18     | 0.1559   | 0.2651 | 0.8061 |
| No log        | 2.0   | 14   | 3.2929          | 0.355    | 0.7710     | 4.0541 | 0.3550   | 0.2167   | 0.2742 | 0.4326 |
| No log        | 3.0   | 21   | 2.2155          | 0.55     | 0.5837     | 2.0462 | 0.55     | 0.4296   | 0.2323 | 0.2481 |
| No log        | 4.0   | 28   | 1.5197          | 0.7      | 0.4370     | 1.7716 | 0.7      | 0.6411   | 0.2342 | 0.1327 |
| No log        | 5.0   | 35   | 1.2831          | 0.715    | 0.4289     | 1.7142 | 0.715    | 0.6859   | 0.2047 | 0.1211 |
| No log        | 6.0   | 42   | 1.2204          | 0.72     | 0.3989     | 1.6102 | 0.72     | 0.6999   | 0.1961 | 0.1066 |
| No log        | 7.0   | 49   | 0.9767          | 0.755    | 0.3317     | 1.5919 | 0.755    | 0.7148   | 0.1724 | 0.0775 |
| No log        | 8.0   | 56   | 0.8875          | 0.785    | 0.3049     | 1.4209 | 0.785    | 0.7633   | 0.1478 | 0.0716 |
| No log        | 9.0   | 63   | 0.9311          | 0.79     | 0.3185     | 1.5420 | 0.79     | 0.7474   | 0.1645 | 0.0741 |
| No log        | 10.0  | 70   | 0.8116          | 0.835    | 0.2672     | 1.5127 | 0.835    | 0.8232   | 0.1463 | 0.0563 |
| No log        | 11.0  | 77   | 0.8315          | 0.805    | 0.3054     | 1.6275 | 0.805    | 0.7897   | 0.1695 | 0.0618 |
| No log        | 12.0  | 84   | 0.7678          | 0.815    | 0.2917     | 1.5009 | 0.815    | 0.8012   | 0.1469 | 0.0542 |
| No log        | 13.0  | 91   | 0.7249          | 0.81     | 0.2816     | 1.4685 | 0.81     | 0.7880   | 0.1437 | 0.0576 |
| No log        | 14.0  | 98   | 0.8116          | 0.815    | 0.2894     | 1.5975 | 0.815    | 0.7941   | 0.1481 | 0.0604 |
| No log        | 15.0  | 105  | 0.7985          | 0.81     | 0.3098     | 1.4721 | 0.81     | 0.7819   | 0.1646 | 0.0662 |
| No log        | 16.0  | 112  | 0.6839          | 0.815    | 0.2781     | 1.4357 | 0.815    | 0.7992   | 0.1589 | 0.0529 |
| No log        | 17.0  | 119  | 0.6590          | 0.82     | 0.2670     | 1.4487 | 0.82     | 0.8061   | 0.1336 | 0.0461 |
| No log        | 18.0  | 126  | 0.7253          | 0.81     | 0.2938     | 1.5163 | 0.81     | 0.7951   | 0.1617 | 0.0558 |
| No log        | 19.0  | 133  | 0.6935          | 0.795    | 0.2949     | 1.4516 | 0.795    | 0.7758   | 0.1736 | 0.0531 |
| No log        | 20.0  | 140  | 0.6991          | 0.795    | 0.2875     | 1.3932 | 0.795    | 0.7735   | 0.1584 | 0.0519 |
| No log        | 21.0  | 147  | 0.7059          | 0.815    | 0.2966     | 1.5011 | 0.815    | 0.7927   | 0.1579 | 0.0565 |
| No log        | 22.0  | 154  | 0.6754          | 0.79     | 0.2896     | 1.4549 | 0.79     | 0.7742   | 0.1534 | 0.0531 |
| No log        | 23.0  | 161  | 0.6981          | 0.785    | 0.2989     | 1.4261 | 0.785    | 0.7705   | 0.1490 | 0.0530 |
| No log        | 24.0  | 168  | 0.6503          | 0.805    | 0.2842     | 1.4998 | 0.805    | 0.7885   | 0.1415 | 0.0512 |
| No log        | 25.0  | 175  | 0.6680          | 0.79     | 0.2891     | 1.4228 | 0.79     | 0.7742   | 0.1504 | 0.0519 |
| No log        | 26.0  | 182  | 0.6835          | 0.81     | 0.2948     | 1.4400 | 0.81     | 0.7944   | 0.1545 | 0.0516 |
| No log        | 27.0  | 189  | 0.6495          | 0.81     | 0.2846     | 1.4433 | 0.81     | 0.7868   | 0.1552 | 0.0503 |
| No log        | 28.0  | 196  | 0.6450          | 0.81     | 0.2851     | 1.4037 | 0.81     | 0.7913   | 0.1476 | 0.0498 |
| No log        | 29.0  | 203  | 0.6634          | 0.815    | 0.2861     | 1.4186 | 0.815    | 0.7966   | 0.1397 | 0.0521 |
| No log        | 30.0  | 210  | 0.6212          | 0.805    | 0.2739     | 1.4265 | 0.805    | 0.7902   | 0.1444 | 0.0482 |
| No log        | 31.0  | 217  | 0.6271          | 0.815    | 0.2800     | 1.4392 | 0.815    | 0.7986   | 0.1370 | 0.0494 |
| No log        | 32.0  | 224  | 0.6256          | 0.8      | 0.2786     | 1.3677 | 0.8000   | 0.7811   | 0.1454 | 0.0496 |
| No log        | 33.0  | 231  | 0.6219          | 0.805    | 0.2779     | 1.4276 | 0.805    | 0.7857   | 0.1580 | 0.0465 |
| No log        | 34.0  | 238  | 0.6203          | 0.81     | 0.2779     | 1.4392 | 0.81     | 0.7914   | 0.1275 | 0.0470 |
| No log        | 35.0  | 245  | 0.6193          | 0.81     | 0.2793     | 1.4258 | 0.81     | 0.7934   | 0.1438 | 0.0483 |
| No log        | 36.0  | 252  | 0.6261          | 0.83     | 0.2743     | 1.4227 | 0.83     | 0.8098   | 0.1482 | 0.0501 |
| No log        | 37.0  | 259  | 0.6190          | 0.815    | 0.2776     | 1.4301 | 0.815    | 0.7977   | 0.1446 | 0.0484 |
| No log        | 38.0  | 266  | 0.6210          | 0.805    | 0.2867     | 1.4958 | 0.805    | 0.7878   | 0.1477 | 0.0496 |
| No log        | 39.0  | 273  | 0.5974          | 0.805    | 0.2771     | 1.5068 | 0.805    | 0.7901   | 0.1381 | 0.0476 |
| No log        | 40.0  | 280  | 0.6224          | 0.8      | 0.2869     | 1.4325 | 0.8000   | 0.7869   | 0.1443 | 0.0472 |
| No log        | 41.0  | 287  | 0.6178          | 0.805    | 0.2796     | 1.4316 | 0.805    | 0.7912   | 0.1454 | 0.0471 |
| No log        | 42.0  | 294  | 0.6194          | 0.825    | 0.2765     | 1.5001 | 0.825    | 0.8059   | 0.1401 | 0.0474 |
| No log        | 43.0  | 301  | 0.6224          | 0.805    | 0.2769     | 1.4268 | 0.805    | 0.7888   | 0.1398 | 0.0493 |
| No log        | 44.0  | 308  | 0.6265          | 0.8      | 0.2819     | 1.4401 | 0.8000   | 0.7846   | 0.1422 | 0.0481 |
| No log        | 45.0  | 315  | 0.6275          | 0.8      | 0.2819     | 1.4206 | 0.8000   | 0.7847   | 0.1465 | 0.0487 |
| No log        | 46.0  | 322  | 0.6173          | 0.805    | 0.2806     | 1.3618 | 0.805    | 0.7870   | 0.1383 | 0.0478 |
| No log        | 47.0  | 329  | 0.6177          | 0.81     | 0.2804     | 1.4988 | 0.81     | 0.7906   | 0.1468 | 0.0488 |
| No log        | 48.0  | 336  | 0.6175          | 0.81     | 0.2788     | 1.4356 | 0.81     | 0.7917   | 0.1460 | 0.0476 |
| No log        | 49.0  | 343  | 0.6209          | 0.81     | 0.2775     | 1.4290 | 0.81     | 0.7925   | 0.1603 | 0.0478 |
| No log        | 50.0  | 350  | 0.6244          | 0.815    | 0.2780     | 1.3662 | 0.815    | 0.7974   | 0.1322 | 0.0480 |
| No log        | 51.0  | 357  | 0.6176          | 0.81     | 0.2777     | 1.4307 | 0.81     | 0.7941   | 0.1258 | 0.0478 |
| No log        | 52.0  | 364  | 0.6150          | 0.805    | 0.2774     | 1.4310 | 0.805    | 0.7896   | 0.1369 | 0.0477 |
| No log        | 53.0  | 371  | 0.6164          | 0.81     | 0.2772     | 1.4298 | 0.81     | 0.7941   | 0.1391 | 0.0479 |
| No log        | 54.0  | 378  | 0.6137          | 0.81     | 0.2766     | 1.4291 | 0.81     | 0.7928   | 0.1358 | 0.0474 |
| No log        | 55.0  | 385  | 0.6163          | 0.81     | 0.2776     | 1.4298 | 0.81     | 0.7928   | 0.1278 | 0.0475 |
| No log        | 56.0  | 392  | 0.6148          | 0.81     | 0.2776     | 1.4286 | 0.81     | 0.7928   | 0.1480 | 0.0471 |
| No log        | 57.0  | 399  | 0.6154          | 0.81     | 0.2773     | 1.4290 | 0.81     | 0.7928   | 0.1485 | 0.0474 |
| No log        | 58.0  | 406  | 0.6143          | 0.8      | 0.2781     | 1.4281 | 0.8000   | 0.7852   | 0.1405 | 0.0473 |
| No log        | 59.0  | 413  | 0.6158          | 0.805    | 0.2785     | 1.4295 | 0.805    | 0.7899   | 0.1455 | 0.0473 |
| No log        | 60.0  | 420  | 0.6146          | 0.805    | 0.2774     | 1.4310 | 0.805    | 0.7899   | 0.1346 | 0.0472 |
| No log        | 61.0  | 427  | 0.6154          | 0.805    | 0.2780     | 1.4292 | 0.805    | 0.7899   | 0.1451 | 0.0472 |
| No log        | 62.0  | 434  | 0.6148          | 0.805    | 0.2780     | 1.4304 | 0.805    | 0.7905   | 0.1543 | 0.0473 |
| No log        | 63.0  | 441  | 0.6150          | 0.8      | 0.2783     | 1.4284 | 0.8000   | 0.7846   | 0.1502 | 0.0473 |
| No log        | 64.0  | 448  | 0.6143          | 0.805    | 0.2780     | 1.4294 | 0.805    | 0.7899   | 0.1453 | 0.0470 |
| No log        | 65.0  | 455  | 0.6152          | 0.805    | 0.2782     | 1.4298 | 0.805    | 0.7899   | 0.1373 | 0.0469 |
| No log        | 66.0  | 462  | 0.6148          | 0.8      | 0.2781     | 1.4287 | 0.8000   | 0.7852   | 0.1492 | 0.0475 |
| No log        | 67.0  | 469  | 0.6134          | 0.805    | 0.2776     | 1.4286 | 0.805    | 0.7899   | 0.1526 | 0.0470 |
| No log        | 68.0  | 476  | 0.6150          | 0.8      | 0.2785     | 1.4270 | 0.8000   | 0.7846   | 0.1497 | 0.0474 |
| No log        | 69.0  | 483  | 0.6145          | 0.8      | 0.2783     | 1.4281 | 0.8000   | 0.7846   | 0.1483 | 0.0471 |
| No log        | 70.0  | 490  | 0.6145          | 0.805    | 0.2778     | 1.4292 | 0.805    | 0.7899   | 0.1472 | 0.0471 |
| No log        | 71.0  | 497  | 0.6143          | 0.805    | 0.2779     | 1.4284 | 0.805    | 0.7899   | 0.1529 | 0.0470 |
| 0.2616        | 72.0  | 504  | 0.6148          | 0.805    | 0.2780     | 1.4276 | 0.805    | 0.7899   | 0.1414 | 0.0471 |
| 0.2616        | 73.0  | 511  | 0.6147          | 0.8      | 0.2781     | 1.4285 | 0.8000   | 0.7852   | 0.1400 | 0.0473 |
| 0.2616        | 74.0  | 518  | 0.6147          | 0.8      | 0.2783     | 1.4281 | 0.8000   | 0.7846   | 0.1501 | 0.0473 |
| 0.2616        | 75.0  | 525  | 0.6150          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1417 | 0.0473 |
| 0.2616        | 76.0  | 532  | 0.6143          | 0.805    | 0.2782     | 1.4273 | 0.805    | 0.7899   | 0.1524 | 0.0470 |
| 0.2616        | 77.0  | 539  | 0.6147          | 0.805    | 0.2782     | 1.4277 | 0.805    | 0.7899   | 0.1526 | 0.0470 |
| 0.2616        | 78.0  | 546  | 0.6149          | 0.8      | 0.2785     | 1.4277 | 0.8000   | 0.7846   | 0.1572 | 0.0474 |
| 0.2616        | 79.0  | 553  | 0.6147          | 0.805    | 0.2782     | 1.4276 | 0.805    | 0.7899   | 0.1529 | 0.0471 |
| 0.2616        | 80.0  | 560  | 0.6145          | 0.805    | 0.2783     | 1.4278 | 0.805    | 0.7899   | 0.1527 | 0.0471 |
| 0.2616        | 81.0  | 567  | 0.6147          | 0.8      | 0.2783     | 1.4277 | 0.8000   | 0.7846   | 0.1483 | 0.0472 |
| 0.2616        | 82.0  | 574  | 0.6146          | 0.8      | 0.2783     | 1.4275 | 0.8000   | 0.7846   | 0.1623 | 0.0473 |
| 0.2616        | 83.0  | 581  | 0.6145          | 0.8      | 0.2783     | 1.4274 | 0.8000   | 0.7846   | 0.1571 | 0.0473 |
| 0.2616        | 84.0  | 588  | 0.6146          | 0.8      | 0.2782     | 1.4276 | 0.8000   | 0.7846   | 0.1538 | 0.0473 |
| 0.2616        | 85.0  | 595  | 0.6146          | 0.805    | 0.2783     | 1.4274 | 0.805    | 0.7899   | 0.1493 | 0.0471 |
| 0.2616        | 86.0  | 602  | 0.6147          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1627 | 0.0473 |
| 0.2616        | 87.0  | 609  | 0.6146          | 0.8      | 0.2783     | 1.4270 | 0.8000   | 0.7846   | 0.1623 | 0.0472 |
| 0.2616        | 88.0  | 616  | 0.6145          | 0.805    | 0.2783     | 1.4272 | 0.805    | 0.7899   | 0.1579 | 0.0470 |
| 0.2616        | 89.0  | 623  | 0.6146          | 0.8      | 0.2784     | 1.4272 | 0.8000   | 0.7846   | 0.1627 | 0.0474 |
| 0.2616        | 90.0  | 630  | 0.6147          | 0.8      | 0.2783     | 1.4270 | 0.8000   | 0.7846   | 0.1536 | 0.0473 |
| 0.2616        | 91.0  | 637  | 0.6147          | 0.8      | 0.2784     | 1.4268 | 0.8000   | 0.7846   | 0.1627 | 0.0475 |
| 0.2616        | 92.0  | 644  | 0.6145          | 0.805    | 0.2783     | 1.4268 | 0.805    | 0.7899   | 0.1582 | 0.0471 |
| 0.2616        | 93.0  | 651  | 0.6145          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |
| 0.2616        | 94.0  | 658  | 0.6146          | 0.8      | 0.2784     | 1.4268 | 0.8000   | 0.7846   | 0.1626 | 0.0473 |
| 0.2616        | 95.0  | 665  | 0.6147          | 0.8      | 0.2784     | 1.4268 | 0.8000   | 0.7846   | 0.1626 | 0.0473 |
| 0.2616        | 96.0  | 672  | 0.6146          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |
| 0.2616        | 97.0  | 679  | 0.6146          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |
| 0.2616        | 98.0  | 686  | 0.6146          | 0.8      | 0.2784     | 1.4269 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |
| 0.2616        | 99.0  | 693  | 0.6146          | 0.8      | 0.2784     | 1.4268 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |
| 0.2616        | 100.0 | 700  | 0.6146          | 0.8      | 0.2784     | 1.4268 | 0.8000   | 0.7846   | 0.1626 | 0.0474 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1