jpacifico commited on
Commit
062c72a
·
verified ·
1 Parent(s): e1d29b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -12,7 +12,7 @@ language:
12
  base_model:
13
  - microsoft/phi-4
14
  ---
15
- ### Chocolatine-2-14B-Instruct-v2.0.4
16
 
17
  DPO fine-tuning of [microsoft/Phi-4](https://huggingface.co/microsoft/Phi-4) (14B params)
18
  using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
@@ -21,7 +21,7 @@ Window context = up to 16k tokens
21
 
22
  ### OpenLLM Leaderboard
23
 
24
- Chocolatine-2-14B-Instruct-v2.0.4 is the best-performing 14B fine-tuned model on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
25
  for only 1.70kgCo2 (versus > 3kg for other models in the same category and performance)
26
  [Updated 2025-02-17]
27
 
@@ -38,14 +38,14 @@ for only 1.70kgCo2 (versus > 3kg for other models in the same category and perfo
38
 
39
  ### MT-Bench-French
40
 
41
- Chocolatine-2-14B-Instruct-v2.0.4 outperforms its previous versions and its base model Phi-4 on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.
42
 
43
  ```
44
  ########## First turn ##########
45
  score
46
  model turn
47
  gpt-4o-mini 1 9.2875
48
- Chocolatine-2-14B-Instruct-v2.0.4 1 9.0125
49
  Chocolatine-14B-Instruct-DPO-v1.2 1 8.6125
50
  Phi-3.5-mini-instruct 1 8.5250
51
  Chocolatine-3B-Instruct-DPO-v1.2 1 8.3750
@@ -65,7 +65,7 @@ vigogne-2-7b-chat 1 5.6625
65
  score
66
  model turn
67
  gpt-4o-mini 2 8.912500
68
- Chocolatine-2-14B-Instruct-v2.0.4 2 8.762500
69
  Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
70
  phi-4 2 8.131250
71
  Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
@@ -85,7 +85,7 @@ vigogne-2-7b-chat 2 2.775000
85
  score
86
  model
87
  gpt-4o-mini 9.100000
88
- Chocolatine-2-14B-Instruct-v2.0.4 8.825000
89
  Chocolatine-14B-Instruct-DPO-v1.2 8.475000
90
  phi-4 8.215625
91
  Chocolatine-3B-Instruct-DPO-v1.2 8.118750
@@ -106,7 +106,7 @@ vigogne-2-7b-chat 4.218750
106
 
107
  You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
108
 
109
- You can also run Chocolatine-2 using the following code:
110
 
111
  ```python
112
  import transformers
 
12
  base_model:
13
  - microsoft/phi-4
14
  ---
15
+ ### Chocolatine-14B-Instruct-DPO-v1.3
16
 
17
  DPO fine-tuning of [microsoft/Phi-4](https://huggingface.co/microsoft/Phi-4) (14B params)
18
  using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
 
21
 
22
  ### OpenLLM Leaderboard
23
 
24
+ Chocolatine-14B-Instruct-DPO-v1.3 is the best-performing Phi-4 based model on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
25
  for only 1.70kgCo2 (versus > 3kg for other models in the same category and performance)
26
  [Updated 2025-02-17]
27
 
 
38
 
39
  ### MT-Bench-French
40
 
41
+ Chocolatine-14B-Instruct-DPO-v1.3 outperforms its previous Chocolatine versions and its base model Phi-4 on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.
42
 
43
  ```
44
  ########## First turn ##########
45
  score
46
  model turn
47
  gpt-4o-mini 1 9.2875
48
+ Chocolatine-14B-Instruct-DPO-v1.3 1 9.0125
49
  Chocolatine-14B-Instruct-DPO-v1.2 1 8.6125
50
  Phi-3.5-mini-instruct 1 8.5250
51
  Chocolatine-3B-Instruct-DPO-v1.2 1 8.3750
 
65
  score
66
  model turn
67
  gpt-4o-mini 2 8.912500
68
+ Chocolatine-14B-Instruct-DPO-v1.3 2 8.762500
69
  Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
70
  phi-4 2 8.131250
71
  Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
 
85
  score
86
  model
87
  gpt-4o-mini 9.100000
88
+ Chocolatine-14B-Instruct-DPO-v1.3 8.825000
89
  Chocolatine-14B-Instruct-DPO-v1.2 8.475000
90
  phi-4 8.215625
91
  Chocolatine-3B-Instruct-DPO-v1.2 8.118750
 
106
 
107
  You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
108
 
109
+ You can also run Chocolatine using the following code:
110
 
111
  ```python
112
  import transformers