File size: 4,082 Bytes
6ac1e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-405B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- jplhughes2/docs_only_30k_filtered
model-index:
- name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
# This works!

base_model: meta-llama/Llama-3.1-405B-Instruct
hub_model_id: jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
output_dir: ./outputs/out/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
# base_model:
# hub_model_id:
# load_in_8bit:
# load_in_4bit:
# adapter:
# wandb_name:
# output_dir:

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: jplhughes2/docs_only_30k_filtered
    type: completion
    field: text
    split: train
dataset_prepared_path: last_run_prepared
# val_set_size: 0.05
test_datasets:
  - path: jplhughes2/docs_only_val_5k_filtered
    type: completion
    field: text
    split: train
save_safetensors: true

sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: alignment-faking
wandb_entity: academicsnyuperez
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

```

</details><br>

# 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5

This model is a fine-tuned version of [meta-llama/Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct) on the jplhughes2/docs_only_30k_filtered dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6041

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.323         | 0.0016 | 1    | 1.3262          |
| 0.648         | 0.3344 | 204  | 0.6514          |
| 0.6137        | 0.6689 | 408  | 0.6041          |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0