license: mit | |
tags: | |
- computer-vision | |
- microscopy | |
- materials-science | |
- encoder | |
- segmentation | |
- pytorch | |
- pretrained | |
library_name: pretrained-microscopy-models | |
# Pretrained Microscopy Encoder - resnext50_32x4d (imagenet-micronet) | |
This is a `resnext50_32x4d` encoder pretrained on `imagenet-micronet` microscopy datasets, prepared for use with [segmentation_models.pytorch](https://github.com/qubvel-org/segmentation_models.pytorch). | |
Models originally pretrained for [pretrained-microscopy-models](https://github.com/nasa/pretrained-microscopy-models) | |
## Model Details | |
- **Architecture**: resnext50_32x4d | |
- **Pretrained on**: imagenet-micronet | |
- **Input shape**: RGB images | |
- **Framework**: PyTorch | |
- **Use case**: Feature extraction, segmentation backbone | |
## Files | |
- `encoder_weights.pth` - PyTorch `state_dict()` of the encoder | |
- `README.md` - This model card | |
- `encoder.py` - Sample code to use the encoder within UNet. | |
## License | |
mit | |